

The Deep Underground Neutrino Experiment

Xiangpan Ji, Tsinghua University On behalf of the DUNE Collaboration

> Rencontres du Vietnam 2017 July 16-22, 2017

DUNE Overview

- Measure v_e appearance and v_μ disappearance in a wide band v beam at a 1300 km baseline
- Measure CP violation, mass hierarchy (MH), and neutrino mixing parameters in a single experiment
- Large detector, deep underground gives access to nucleon decay, supernova neutrinos, etc.

DUNE Collaboration

Global collaboration

- 964 collaborators
- 164 institutions
- 30 countries

Long Baseline Neutrino Facility Beamline

- Horn-focused beam line similar to NuMI beam line
- 60-120 GeV protons from Fermilab Main Injector
- Initial power: 1.2 MW (@120 GeV); plan to upgrade to 2.4 MW
- 200 m decay pipe at ~5.8° pitch, angled at the far detector

Near Detector (ND)

 Primary purpose: constrain systematic errors for FD oscillation measurements

- High-precision cross-section and short baseline measurements
- Fine-grained tracker
 - DUNE reference design
 - Excellent resolution
 - 0.1 mm vertex
 - 2 mrad angular
 - 5% momentum
- Straw tube tracker (SST)
- Lead-scintillator ECAL
- RPC muon trackers

Far Detector (FD) at SURF

- Two FD designs of Liquid Argon Time Projection Chamber (LArTPC) are considered: single phase (only LAr) and dual phase (LAr + GAr)
- Four 10-kt (fiducial) modules, totally 40-kt (fiducial) LAr at 4850ft level

Sanford Underground Research Facility FD: 4 modules

Liquid Argon Time Projection Chamber (LArTPC)

- Energetic, charged particles ionize liquid argon along their paths
- Electric filed drift the ionization electrons to wire planes that record information of time, geometry and charge
- LArTPC features: unique e/γ separation, and precision 3D imaging capability

Far Detector: Single Phase

- Liquid Argon TPC
- Four drift regions across detector
 - 3.6 m drift each
 - 500 V/cm drift filed
 - Anode and Cathode Plane Assemblies (APA, CPA) suspended from ceiling

- APA planes are composed of three wire planes:
 - 2 induction and 1 collection planes
 - Charge collection and readout
- Photon detectors (SiPM) are embedded in APAs

Far Detector: Dual Phase

- Liquid + Gas Argon detector
 - LAr target
 - GAr amplification and readout
- Single drift region in LAr
 - 12 m vertical drift
 - 500 V/cm drift filed
- Ionization charge extracted from liquid into gas layer
- Amplification via Large Electron Multiplier (LEM)
- Charge readout strips
- Scintillation via PMT's below cathode

ProtoDUNEs at the CERN Neutrino Platform

- Two FD prototypes being built at CERN
- CERN Neutrino Platform in construction
- Provided valuable insight into detector design, operations, and data analysis
- Test-Beam operations in 2018: 0.4-12GeV, e,μ,π,K,p

ProtoDUNEs Construction

- Single-phase ProtoDUNE:
 - Full-sized APA-CPA
 - full drift distances (3.6m)
 - 6 m \times 6 m \times 6 m

- Dual-phase ProtoDUNE:
 - Full-sized readout planes
 - half of final drift distance
 - $6 \text{ m} \times 6 \text{ m} \times 6 \text{ m}$

DUNE Timeline

2017: Far Site Construction Beings 2018: Two ProtoDUNEs operational at CERN

2021: Start of 1st FD module (single phase) installation

2023: Start of 2nd FD module installation 2024: First 20-kt Far Detector operational

2026: Beam operation begins

Physics Research

- Long baseline oscillation physics
- Nucleon decay
- Supernova neutrinos
- Other physics topics

 $\nu_{\mu} \rightarrow \nu_{e}$ Appearance $\Delta_{ij} = \Delta m_{ij}^2 L/4E_{\nu}$ $a = G_F N_e / \sqrt{2}$ $P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$ $+\sin 2\theta_{23}\sin 2\theta_{13}\sin 2\theta_{12}\frac{\sin(\Delta_{31}-aL)}{(\Delta_{31}-aL)}\Delta_{31}\frac{\sin(aL)}{(aL)}\Delta_{21}\cos(\Delta_{31}+\delta_{CP})$ $+\cos^2\theta_{23}\sin^22\theta_{12}\frac{\sin^2(aL)}{(aL)^2}\Delta_{21}^2,$ v_{u} CC spectrum at 1300 km, $\Delta m_{31}^{2} = 2.4e-03 \text{ eV}^{2}$ 1000 v_u CC spectrum 0.18 • $\sin^2 2\theta_{13} = 0.0, \ \delta_{cp} = n/a$ v_e appearance amplitude • $\sin^2 2\theta_{13} = 0.1, \, \delta_{cp} = \pi/2$ 800 -10.16 v_{μ} CC evts/GeV/10kt/MW.yr depends on: θ_{23} , θ_{13} , δ_{CP} , ppearance Probabilit matter effect 600 0.12 Large value of $\sin^2 2\theta_{13}$ 400 0.08 0.06 allows significant $v_{\rm e}$ 200 0.04 appearance sample 0.02 10 E (GeV)

Xiangpan Ji @ Rencontres du Vietnam

Matter Asymmetry

- Electrons are present in matter while positrons and other leptons are not.
- CC matter effects occur for v_e and \bar{v}_e , v_μ and v_τ have only NC matter effect interactions
- Normal hierarchy: matter effect enhances v_e appearance probability and suppresses \overline{v}_e appearance probability (opposite for inverted hierarchy).

Neutrino Oscillation at DUNE

- Measure $v_e(v_\mu)$ (dis)appearance probability with v_μ and anti- v_μ beam
- Measure CP violation, MH, and oscillation parameters
- 1300 km baseline: large matter effect to solve MH
- Wide band beam covers 1st and 2nd oscillation maxima

Oscillation Sensitivity Calculations

- GLoBES-based fit to four samples in FD: $\nu_e/\bar{\nu}_e (\nu_\mu/\bar{\nu}_\mu)$ (dis)appearance (GLoBES configurations in arXiv:1606.09550)
- Shape information helps to pin down oscillation parameters

CP Violation Sensitivity

- Width of band corresponds to 90% C.L. variations in value of θ_{23} based on NuFit 2016 fit values
- Equal running time in neutrino and anti-neutrino modes

Mass Hierarchy Sensitivity

- Width of band corresponds to 90% C.L. variations in value of θ_{23} based on NuFit 2016 fit values
- Equal running time in neutrino and anti-neutrino modes

CPV and MH Sensitivity Over Time

• Equal running time in neutrino and anti-neutrino modes

Oscillation Parameter Sensitivity

• Long-baseline experiments will approach the resolution of reactor experiments in the measurement of the mixing angles.

Proton Decay

- Test of fundamental symmetries, e.g. baryon number conservation
- Grand Unified Theories (GUTs) make specific predictions for decay modes, lifetimes, branching ratios
- Features DUNE FD: Low background rate (deep underground location) High signal efficiency (precision tracking in LArTPC) Large exposure (40 kt, running 20+ years)

Decay Mode	Water Cherenkov		Liquid Argon TPC	
	Efficiency	Background	Efficiency	Background
$p \to K^+ \overline{ u}$	19%	4	97%	1
$p ightarrow K^0 \mu^+$	10%	8	47%	< 2
$p ightarrow K^+ \mu^- \pi^+$			97%	1
$n \to K^+ e^-$	10%	3	96%	< 2
$n \to e^+ \pi^-$	19%	2	44%	0.8

Supernova Neutrino Burst (SNB)

- Core-collapse supernova are a huge source of neutrinos of all flavors
 - 99% of energy taken by neutrinos
 - 1% of energy, the exploding matter
 - 0.01% light
- Expected SNs in our Galaxy (d ≈ 10 kpc): 1-3 SN/century
- SN1987a observation yielded insights, but many details left to be understood
- High-statistics observation of SNB neutrinos, with sensitivity to flavor components, interesting for astrophysics and neutrino physics

Supernova neutrinos in DUNE

• Elastic scattering (ES) on electrons

 $\nu + e^- \rightarrow \nu + e^ \bar{\nu} + e^- \rightarrow \bar{\nu} + e^-$

• Charged-current (CC) interactions on Ar $v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$ $\bar{\nu}_e + {}^{40}\text{Ar} \rightarrow e^+ + {}^{40}\text{Cl}^*$

 Event rates in DUNE (40 kt LAr) for a corecollapse SN at 10 kpc

Channel	Events "Livermore" model	Events "GKVM" model
$\nu_e + {}^{40} \operatorname{Ar} \to e^- + {}^{40} \operatorname{K}^*$	2720	3350
$\overline{\nu}_e + {}^{40}\operatorname{Ar} \to e^+ + {}^{40}\operatorname{Cl}^*$	230	160
$\nu_x + e^- \to \nu_x + e^-$	350	260
Total	3300	3770
	no oscillation colle	active affacts

Xiangpan Ji @ Rencontres du Vietnam

24

Supernova neutrino spectra in DUNE

- Required energy resolution < 10%
- Energy threshold ~ 5 MeV

• SN at 10 kpc in DUNE (40 kt LAr)

* Garching model

Other Physics Topics

DUNE has many other physics topics:

- Atmospheric neutrinos
- v_{τ} appearance
- Non-standard interactions (NSI)
- Long-range interactions
- Sterile neutrinos
- Large extra dimensions
- Lorentz/CPT violation
- Light dark matter

Summary

- DUNE physics program will produce results at each stage of 20+ year operation
- ♦ DUNE has a broad physics program
- Measure the CP Violation and determine the Mass Hierarchy
- Precision oscillation parameter measurements
- Search for Nucleon Decay and Supernova Burst v
- Also include: Atmospheric v, NSI, Sterile v, ...
- ♦ Far site construction and prototypes are underway this year

Thanks

Backup

Single Phase FD Performance

Parameter	Reference Performance	Achieved Elsewhere	Expected Performance
Signal/Noise Ratio ¹	9:1	10:1 [6, 7] ²	9:1
Electron Lifetime	3 ms	> 15 ms [7]	> 3 ms
Uncertainty on Charge			
Loss due to Lifetime	< 1%	< 1% [7]	< 1%
Dynamic Range of Hit			
Charge Measurement	15 MIP		15 MIP
Vertex Position Resolution ³	(2.5,2.5,2.5) cm		(1.1,1.4,1.7) cm [8, 9]
$e-\gamma$ separation ϵ_e	0.9		0.9
$e-\gamma$ separation γ rejection	0.99		0.99
Multiple Scattering Resolution			
on muon momentum 4	${\sim}18\%$	${\sim}18\%$ [10, 11]	${\sim}18\%$
Electron Energy Scale			From LArIAT
Uncertainty	5%	2.2%[12]	and CERN Prototype
Electron Energy Resolution	$0.15/\sqrt{E(\text{MeV})}$	$0.33/\sqrt{E(MeV)}$ [12]	From LArIAT
	$\oplus 1\%$	+1%	and CERN Prototype
Energy Resolution for			From LArIAT
Stopping Hadrons	1–5%		and CERN Prototype
Stub-Finding Efficiency ⁵	90%		> 90%

Dual Phase FD Performance

Table 5.1: Performance parameters specific to the dual-phase far detector design

Parameter	Requirement	Achieved Elsewhere	Expected Performance
Gas phase gain	20	200	20-100
Electron Lifetime	3 ms	$>3~{ m ms}$ 35-t prototype	> 5 ms
Minimal S/N after 12 m drift	9:1	> 100:1	12:1-60:1

Table 5.2: Sizes and Dimensions for the 12-kt (15-kt) dual-phase LArTPC

ltem	Value(s)	
Active volume width and length	W = 12 m	L = 60 m
Active volume height	H = 12 m (H = 15 m)	
Active volume/LAr mass	8,640 (10,800) m ³	12,096 (15,120) metric ton
Field ring vertical spacing	200 mm	
Field ring tube diameter	140 mm	
Anode plane size	W = 12 m	L = 60 m
CRP unit size	W = 3 m	L = 3 m
HV for vertical drift	600–900 kV	
Resistor value	100 MΩ	

Baseline Comparison

MH

 $\delta_{ ext{CP}}$

Sensitivity Benchmarks

Physics milestone	Exposure kt · MW · year (reference beam)	Exposure kt · MW · year (optimized beam)
$1^{\circ} \theta_{23}$ resolution ($\theta_{23} = 42^{\circ}$)	70	45
CPV at 3σ ($\delta_{\rm CP}=+\pi/2$)	70	60
CPV at 3σ ($\delta_{ m CP}=-\pi/2$)	160	100
CPV at 5σ ($\delta_{ m CP}=+\pi/2$)	280	210
MH at 5σ (worst point)	400	230
10° resolution ($\delta_{\rm CP}=0$)	450	290
CPV at 5σ ($\delta_{ m CP}=-\pi/2$)	525	320
CPV at 5σ 50% of δ_{CP}	810	550
Reactor θ_{13} resolution (sin ² $2\theta_{13} = 0.084 \pm 0.003$)	1200	850
CPV at 3σ 75% of δ_{CP}	1320	850