

### **Elisa Minucci**<sup>†</sup> on behalf of the NA62 Collaboration

### Rencontres du Vietnam : Neutrinos 2017 *Quy Nhon July 21, 2017*

† UCLouvain-CP3, Louvain-la-Neuve, Belgium

### Kaons experiment @ CERN





## Outline



- Theoretical motivations
- Search for HN production in  $K^+ \rightarrow \mu^+ v_h$  with NA62 2007 data sample
- Search for HN production in  $K^+ \rightarrow e^+ v_h$  with NA62 2015 data sample
- Conclusions

## Outline



### Theoretical motivations

- Search of HN production in  $K^+ \rightarrow \mu^+ v_h$  with NA62 2007 data sample
- Search of HN production in  $K^+ \rightarrow e^+ v_h$  with NA62 2015 data sample
- Conclusions

# Why looking for heavy neutrinos?

#### Open theoretical issues:

- Neutrinos oscillations  $\rightarrow$  non-zero neutrinos masses
- Why neutrinos are lighter than the other leptons?
- Presence of dark matter → no SM particle satisfies the dark matter properties
- Baryon asymmetry
- ...
- SM extentions → Some of these issues:
  - neutrinos masses
  - the baryon asymmetry of the Universe
  - cosmic dark matter

can be explain **adding right handed (sterile) neutrinos** to the SM, which can mix with SM flavor states.







# Why looking for heavy neutrinos @ GeV-scale?

#### Gev-scale seesaw:

- HNLs with such masses can be efficiently searched for with the existing experimental techniques.
- HNLs for masses of active neutrinos can generate the baryon asymmetry of the universe via HNL oscillations
- HNLs with 0.2 GeV mass can play an important role in supernova explosions
- HNLs at GeV scale are also important for lepton number violation, flavor violation, lepton universality violation and neutrino-less double beta decay

### A simple model is the Neutrino Minimal Standard Model (vMSM): [Asaka et al., PLB 620 (2005) 17]

- •3 right-handed neutrinos N<sub>i</sub> are added with m<sub>i</sub> of the order or below the electroweak scale *O*(10<sup>2</sup>) GeV
- $N_{1}$  ,  $m_{1}$  ~ O( 10 KeV)  $\,$  possible dark matter candidate  $\,$
- N<sub>2,3</sub>, m<sub>2,3</sub> ~ O(1 GeV)→ additional CPV-phases to account for Baryon Asymmetry





# Heavy neutrinos observable via production or decay

Assuming Heavy Neutrinos (HN) masses are below the kaon mass



#### DECAY

Heavy neutrinos decay only into SM particles

 $\Gamma$  (v<sub>b</sub>  $\rightarrow$  SM particles ) ~  $|U_{\mu}|^2 \cdot m_b^3$ 

For HN mass below 500 MeV/ $c^2$  the dominant decays are:

$$V_h \rightarrow \Pi^0 V, V_h \rightarrow \Pi^{\pm} \mu^{\pm}, V_h \rightarrow \Pi^{\pm} e^{\pm}, V_h \rightarrow VVV$$

In NA62 the mean free path for  $K^+ \rightarrow \mu^+ v_h$  and  $K^+ \rightarrow e^+ v_h$ , assuming  $|U_{14}|^2 < 10^{-4}$  is greater than 10 Km  $\rightarrow$ heavy neutrinos decays are negligible.

Possible analysis in dump mode

7

# Some previous Limits on $|U_{14}|^2$





## Outline



- Theoretical motivations
- Search of HN production in  $K^+ \rightarrow \mu^+ v_h$  with NA62 2007 data sample
- Search of HN production in  $K^+ \rightarrow e^+ v_h$  with NA62 2015 data sample
- Conclusions

### NA62 2007 experimental setup

# $\overline{s}$

### Main measurement: $R_{K} = \Gamma(K_{e2}) / \Gamma(K_{\mu 2})$

[Phys. Lett. B 719 (2013) 326]

K+/ K- beam

### Beam momentum: (74 ± 1.4) GeV/c

Sub-detectors

#### Magnetic spectrometer:

4 drift chambers(DCHs) + dipole magnet

 $\sigma_{P}/p = 0.48\% \oplus 0.009\% \cdot p$ 

### • LKr EM calorimeter $\sigma_{E}/E = 3.2\% / \sqrt{E} \oplus 0.9\% / E \oplus 0.42\%$ $\sigma_{x} = \sigma_{y} = 4.2 \text{ mm} / \sqrt{E} \oplus 0.6 \text{ mm}$

• Hodoscope

fast trigger, good time resolution ~ 150 ps

### • Muon Veto system (MUV)

21/07/2017



# Heavy neutrino in NA62 – 2007: data sample



### HN search in $K^+ \rightarrow \mu^+ v_h$ missing mass distribution

 $m_{h^2} = (P_{\kappa} - P_{\mu})^2$ 

in the 300-375 MeV/c<sup>2</sup> mass range

P<sub>κ</sub> → not on event-by-event basis from K3π reconstruction every 500 SPS spills

 $P_{\mu} \rightarrow$  reconstructed charged track assumed to be a muon

#### Trigger:

one track event downscale D = 150

### **Event Selection**:

- One positively charged track with P ∈ [10,65] GeV/c in DCH, Lkr and MUV acceptance
- Distance of closest approach < 3cm</li>
- No clusters in Lkr with E>2 GeV not associated to the track
- Multi dimentional cut in (Z<sub>vtx</sub>,θ,p,CDA,Φ) to suppress muon
   halo background

### Data sample

Analysis based on data with K<sup>+</sup> beam only

(muon halo background smaller than for K<sup>-</sup>beam)

Data taken with K<sup>-</sup>beam only used to study the background from halo muons

Dedicated HN MC simulation with mass m<sub>h</sub> [240,380] MeV/c<sup>2</sup> for acceptance and resolution studies as a function of HN's mass at 1MeV/c<sup>2</sup> intervals

# Heavy neutrino in NA62 – 2007: Background



Kaon decays in the fiducial volume from reconstructed  $K^+ \rightarrow \mu^+ v$ 



N<sub>κ</sub> ~ 6 x 10<sup>7</sup>

#### Background contributions:

- Muon halo data driven study
- Kaon decays MC simulation

E. Minucci - Neutrinos2017

# Heavy neutrino in NA62 – 2007: Background



Systematic uncertainties as a function of the  $\rm m_{\rm miss}$ 

Systematic uncertainties:  $N_{\kappa}$ , Br, limited size of the control sample

### Kaon decay background:

0.6% - 1% systematic uncertanty Dominated by Br(Kµ3) 0.2% → associated with N<sub>K</sub> 0.15% → contribution from Br(Kµ2)

### Muon Halo background:

5% - 20% systematic uncertainty



# Heavy neutrino in NA62 – 2007: Results

Rolke-Lopez method to find upper limits (Poisson process/Gaussian backgrounds)



# Heavy neutrino in NA62 – 2007: Results

#### Comparison with existing measurements



## Outline



- Theoretical motivations
- Search of HN production in  $K^+ \rightarrow \mu^+ v_h$  with NA62 2007 data sample
- Search of HN production in  $K^+ \rightarrow e^+ v_h$  with NA62 2015 data sample
- Conclusions

### NA62 experimental setup



#### Sub-detectors:

- Tracking: Kaon (GTK) π/μ/e (STRAW)
- Particle Identification:
  - Kaon in the beam (KTAG)
  - п/µ/е (RICH, Lkr, MUV)

- Hermetic Veto detectors:
  - Photons (LAV, LKr, SAV)
  - Muons (MUV)

### Heavy Neutrino with NA62 2015 data sample

# s v v

### Minimum bias runs

Beam intensity 0.4% – 1.3% of the nominal one

kaon tracker not yet available beam momentum K3п sample



CHOD/D<sub>1</sub>\* CHOD x !MUV3 MUV3/D<sub>2</sub>\*

\*  $D_1$ ,  $D_2$  downscaling factors

### Background studies with MC sample:

- standard decay region → for  $K^+$  decays
- standard upstream region → to study the beam bkg from kaon decays upstream



### $K^+ \rightarrow e^+ N$ event selection:

- 1 positive track with p ∈ [5,70]GeV/c and in STRAW, Lkr, MUV acceptance
- CDA < 25 mm,  $Z_{vtx}$  > 115 m
- No Lkr cluster d>50 mm from track impact point
- LAV, SAV and MUV veto
- 0.9 < E/p < 1.15

### Heavy Neutrino with NA62 2015 data sample



### HN search in $K^+ \rightarrow e^+ v_h$ missing mass distribution

$$m_{h^2} = (P_{\kappa} - P_{e})^2$$

in the 170 - 448 MeV/c<sup>2</sup> mass range

 $P_{\kappa}$  → event-by-event basis from K3π reconstruction  $P_{e}$  → reconstructed charged track assumed to be an electron

| $N_{K^{e}}$ = (3.01 ± 0.11) x 10 <sup>8</sup><br>$N_{K^{e}}$ = $N_{K}$ /( $A_{e}$ ( $K_{e2}$ )· $B$ ( $K^{+}$ → e <sup>+</sup> v) + $A_{e}$ ( $K_{µ2}$ )· $B$ ( $K^{+}$ → µ <sup>+</sup> v)) |                                 |                         |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|-----------------|
| - Data                                                                                                                                                                                       | Mode                            | Branching fraction      | Background      |
| $\pi^+ \rightarrow e^+ v$                                                                                                                                                                    | Κμ2(γ)                          | 0.6356                  | 3289 ± 10       |
| $K \rightarrow \mu^{+} \forall (\mu \rightarrow e^{-} \forall \forall)$ $K^{+} \rightarrow \mu^{+} \forall (no \ \mu \ decay)$                                                               | Kμ2(γ) – μ Mis-ID               | 0.6356                  | $0.6 \pm 0.4$   |
| $\mathbf{K} \to \mathbf{e}^* \mathbf{v}(\mathbf{\gamma})$                                                                                                                                    | Kμ2(γ) (upstream)               | 0.6356                  | < 3.4           |
|                                                                                                                                                                                              | K⁺ → e⁺νγ (IB)                  | 1.582 ·10 <sup>-5</sup> | $0.2 \pm 0.1$   |
|                                                                                                                                                                                              | $K^+$ → $e^+$ νγ (SD+)          | 1.30 ·10 <sup>-5</sup>  | 7.3 ± 0.2       |
|                                                                                                                                                                                              | $K^+ \rightarrow \pi^0 e^+ \nu$ | 5.07 %                  | $143 \pm 14$    |
|                                                                                                                                                                                              | $\pi^{*} \rightarrow e^{*}\nu$  | 1.123 ·10 <sup>-5</sup> | 66 ± 7          |
|                                                                                                                                                                                              | Total                           |                         | 3506 ± 19 ± 128 |
| 0 0.05 0.1 0.15 0.2<br>m <sup>2</sup> <sub>mic</sub> [GeV <sup>2</sup> /c <sup>4</sup> ]                                                                                                     | Data Events                     |                         | 3390            |

# Heavy Neutrino with NA62 2015: Single Event Sensitivity

Single event sensitivity defined for each HN mass :



### Heavy Neutrino with NA62 2015: limits



Background estimate comes from polynomial fit of data missing mass spectrum (MC sample used only for gualitative understanding of the bkg)

Rolke-Lopez method to compute 90% CL N<sub>obs</sub> → number of observed events in each HN mass hypothesis evaluated within  $\pm 1.5\sigma_m$  signal window

 $N_{exp} \rightarrow$  number of expected bkg

Uncertanties on  $N_{exp}$  typically ~ 10%

- Limited size of data sample
- Systematic uncertainty

(assesed using toy MC)



# World Limits on $|U_{14}|^2$





# Prospects for HN decays in NA62: dump mode



Decay modes HN  $\rightarrow \pi \mu, \ HN \rightarrow \pi e$ 

Search for appearance of single electron/muon afer dump



**NA62 sensitivity**: improvement of two-three orders of magnitude with respect to past experiments between the kaon and the beauty mass. Zero-background limit with 2x10<sup>18</sup> 400 GeV POT(~ 1year long data taking in dump mode)

## Conclusions



■ NA62 searches for heavy neutrino production in charged kaon decays were presented:

### No heavy neutrino signal observed

#### Analysis of NA62 2007 data

•N<sub>K</sub> ~ 6 x 10<sup>7</sup> kaon decays in the fiducial volume •Set limits on  $|U_{\mu4}|^2$  for  $m_h \in [300,375]$  MeV/c<sup>2</sup>

#### Analysis of NA62 2015 data

 $\cdot N_{\kappa} \sim 3 \times 10^8$  kaon decays in the fiducial volume

•New limits on  $|U_{e4}|^2$  for  $m_h \in [170,448]$  MeV/c<sup>2</sup>

■ Future prospects: analysis of data taken in the 2016: higher beam intensity, kaon tracking available give more statistics, improved resolution, lower background → improve limits

# Thanks for your attention