Status of the STEREO reactor neutrino experiment

Felix Kandzia

Institut Laue Langevin, Grenoble

on behalf of the STEREO collaboration

Rencontres du Vietnam - Neutrinos Quy Nhon 21/07/2017

Antineutrinos from nuclear Reactors

- ► β -decays of neutron rich fission products \Rightarrow pure $\bar{\nu}_e$ flux
- $\blacktriangleright ~ \sim 10^{17} \bar{\nu}_e/{\rm MW}_{\rm therm}/{\rm s}$
- long baseline (*O*(100 km)): KamLAND: Δm²₁₂
- Short baseline (O(100 m)-O(1 km)): Daya Bay, Double Chooz, RENO: Δm²₁₃
- very short baseline: sterile neutrinos?

- most precise spectra predictions to date: conversion of cumulative fission product β-spectra
- all predictions rely on same data!

Reactor Antineutrino Anomaly - RAA

NEUTRONS FOR SOCIETY

RAA:

- reevaluation of expected
 \$\vec{\nu}_e\$ spectrum in 2011:
 (Phys Rev C83, 054615;
 Phys Rev C84, 024617)
- \rightarrow 6% deficit in experimental rates w.r.t. new predictions (2.8 σ)

Supported by Ga-Anomaly:

- ν_e deficit (2.9 σ) in calibrations of SAGE and GALLEX with intense isotopic sources
- $\langle L \rangle_{\text{GALLEX}} = 1.9 \,\text{m}, \ \langle L \rangle_{\text{SAGE}} = 0.6 \,\text{m}$

Other anomalies

LSND, MiniBooNe

3 / 30

Investigating the RAA

New Oscillation?

- $\blacktriangleright P_{ee} \simeq 1 \sin^2(\theta_{14}) \sin^2\left(1.27 \cdot \frac{\Delta m_{14}^2 [eV] L[m]}{E_{\bar{\nu}}[MeV]}\right)$
- STEREO (and others) will explore the RAA at very short baselines (~ 10 m)

Wrong predictions of reactor spectra?

Phys.Rev.Lett. 118, 251801, DayaBay Collab. 9 $\Delta \chi^2$ 4 9 5.5 Dava Bav 7239 [10⁻⁴³ cm² / fission] Huber model w/ 68% C.L. 5.0 Δ E 4.0 C.L. 68% 3.5 95% $\sigma_{238} = (10.1 \pm 1.0) \times 10^{-43}$ 99.7% $3.0 \sigma_{241} = (6, 04 \pm 0.60) \times 10^{-10}$ 6.8 7.2 5.2 5.6 6.0 6.4 $\sigma_{235} [10^{-43} \text{ cm}^2 / \text{fission}]$

5 MeV Excess

 \blacktriangleright excess of $\sim 10\%$ at $E_{\bar{\nu}}=5\,{\rm MeV}$ in experimental neutrino rates

- first restrictions PRL 118, 042502 (NEOS & Daya Bay spectra ratios): Pu isotopes disfavoured as beeing solely responsible
- potential of STEREO: pure ²³⁵U spectrum (> 93% enrichment)
 - ²³⁵U contribution to excess
 - test σ_{235} determined by DayaBay

5 / 30

STEREO @ ILL

- nominal power: 58.3 MW_{therm}
- \blacktriangleright operated in cycles of ${\sim}50\,d$
- compact fuel element: $h \approx 80 \text{ cm}, d \approx 40 \text{ cm}$
- ▶ HEU fuel: 93% ²³⁵U
- baseline 8.9-11.1 m
- under a water channel
 (~ 15 m.w.e. overburden)
- ▶ high γ/n background from neighbour instruments (/reactor)

6 / 30

STEREO Site

- H1 H9. HCS γ, n 1 Stereo n_{therm} γ, **Β** D19 IN20 \dot{n}_{therm} - Pb - PE - B4C heavy concrete ■ Shutter
- shielding walls around the site
- dedicated shielding of H7 beamtube (tube now removed)
- strong passive shielding included in the detector setup

- 2 neighbouring neutron scattering experiments
- ▶ high thermal neutron and (n, γ) background

STEREO Inner Detector

Target:

- Gd-loaded liquid scintillator (LS)
- 2.2×0.9×0.9 m³, 6 cells
- PSD for fast neutrons
- reconstruction of interaction vertex/event topology
- energy measurement

Outer Crown:

- "Gamma Catcher" (GC)
- background veto
- LS w/o Gd

Separation Walls:

- specular reflective
- acrylic sandwiches + airgap + VM2000

Acrylic Buffers:

- mineral oil for optical coupling
- housing 48 PMTs (8")

NEUTRONS

Calibration Systems

Radioactive source deployment

- tubes in three cells
- rail underneath the detector
- 'pantograph' for source calibrations outside (2D)

LED system

- light injectors for bottom, mid and top of each cell
- $\rightarrow\,$ single PE calibration or gain-stability calibration
- UV light injection to monitor WLS performance

30

Muon Veto

- covering full setup on top
- water Cherenkov detector, equipped with 20 PMTs
- intrinsic efficiency > 99% (tested with vertical muons)
- veto after muon trigger applied off-line

Neutrino Signals

Signal: Inverse beta decay (IBD)

- ► $\bar{\nu}_e + p \longrightarrow n + e^+$ ($E_{\bar{\nu}} > 1.8 \text{ MeV}$, $E_{e^+} \sim E_{\bar{\nu}} 780 \text{ keV}$)
- ▶ prompt: e^+ excitation and annihilation: $2 \text{ MeV} < E_{dep}^{det} < 8 \text{ MeV}$
- ightarrow delayed: n moderation & capture (Gd), au pprox 17 μ s: 5 MeV < $E_{
 m dep}^{
 m det}$ < 10 MeV
- coincidence time window: 70 μ s

Background:

- random coincidences of single events
- correlated events (e.g. fast neutron scattering & capture)

STEREO Oscillation Analysis

Shape analysis along 6 identical cells (~ sin²(L/E_ν))

 \rightarrow independent of absolute normalisation

rate/ rate+shape analysis

Data taking:

- ▶ Nov. 2016 March 2017:
 - $\blacktriangleright~\sim$ 70 days reactor ON
 - (+2 weeks commissioning)
 - $\blacktriangleright~\sim$ 28 days reactor OFF
- March October 2017
 - reactor shutdown for maintenance
 - used for STEREO maintenance

Oscillation phase shift inside the target

projected sensitivity (300 d):

12 / 30

STEREO Mounting and Installation

STEREO Mounting and Installation

Sept. 2016: STEREO moves in (93 t on aircushions)

final installations

9./10. Nov. 2016: filling

Rencontres du Vietnam - Neutrino - 2017

14 / 30

Commissioning

- first light on Nov. 10, 2016
- ho < 1% DAQ deadtime up to few kHz
- \blacktriangleright trigger threshold at \sim 250 keV

Two problems encountered during comissioning

- buffer oil leakage in one target cell (cell4) and one gamma-catcher cell (front)
- \Rightarrow no effect on scintillator
- $\Rightarrow\,$ light collection reduced by $\sim 50\%$ in affected cells
- LS entered the separation walls
- \Rightarrow degradation of reflectivity
- \Rightarrow larger optical crosstalk in between cells
- $\rightarrow\,$ repaired in current reactor shutdown

FOR SOCIETY

'Light Leaks'

- evolution in time (slow filling of the walls)
- affect light collection of individual cells
- no big effect on global light collection

- calculation from source calibrations (height dependence)
- calculation from physics runs (non-invasive, hourly, cell average):

fit Q_k in lower band of Q_i vs Q_k distribution

 modelled in MC by partially filling separation walls with scintillator

Energy Reconstruction

 accounting for light produced in the cell and light leaking from other cells

$$Q_i = \sum_j E_j^{\mathsf{dep}} imes C_j imes LL_{ji} = \sum_j E_j^{\mathsf{dep}} imes \mathbf{M}_{ji}$$

Validation:

► stability of hydrogen neutron capture peak: H(n, γ)D, $E_{\gamma} = 2223 \text{ keV}$

Data - MC Comparison

- calibration with Mn-54 (E_{γ} =834 keV)
- already good agreement in data & MC
- Finetuning of MC parameters pending
- z-dependence of peak position
- $\rightarrow\,$ in good agreement in Data & MC for reconstructed energy

Calibration of the Gamma Catcher

- calibration with pantograph
- source at different positions along gamma catcher
- determination of spatial inhomogeneities in response

► short cell has ~ same geometry as target cells

Long Gamma Catcher cell:

Short Gamma Catcher cell:

Scintillator Non-linearity Analysis

- Birks: $\frac{dS}{dx} = \frac{A dE/dx}{1+k_B dE/dx}$
- \blacktriangleright scintillator energy response determined with $\gamma\text{-sources}$
- ► Calibration Coefficient := $\frac{\text{Charge [pe]}|_{Data}}{\text{Energy deposit [MeV]}|_{MC}}$

Gd Neutron Capture Fraction

- monitoring of time stability
- relative cell intercalibration
- measured with neutron source (Am-Be)
 - 4.4 MeV γ as prompt
 - fast $n \rightarrow$ need moderation time
 - \Rightarrow max. capture probability at $\sim 8 \,\mu s$
- Gd-capture fraction $\approx 86\%$

Am-Be, cell6, center

MeV* Entries/µ Preliminary Capture time spectra Preliminary Entries/0.05 N 0005 0005 N 0005 0005 N Inverse beta decay events τ_{cap} = 16.48 ± 0.55 μs n-Gd AmBe events τ.... = 16.24 ± 0.15 μs n-H 1500 1000 500 з 20 30 40 Non-calib. energy [MeV*]

Neutron capture time: Am-Be & IBD

FOR SOCIETY

∆tíus1

Single Event Rates

- Possible sources: any (μ, γ, n)
- \Rightarrow controlled by passive shielding
- with current shielding:
 - low threshold (\approx 250 keV)
 - ► kHz trigger rate
- main features in residual spectrum:
 - ► Ar-41: 1.3 MeV
 - ► H(n,γ): 2.2 MeV
 - Co-60: 2.5 MeV
 - TI-208: 2.6 MeV
 - ► Gd(n,γ): ~8 MeV

Accidental Coincidences

- ▶ purely statistical (by definition), approximately: $R_{\rm acc} \simeq R_{\rm prompt} R_{\rm delayed} T_{\rm coinc}$
- determined in 'off-time' windows and subtracted statistically
- uncertainty reduced by using multiple windows

accidental background not dominant

Correlated Background

- Possible sources:
 - fast neutrons from reactor
 - ▶ muons/muon induced events (e.m. shower, fast neutrons, multiple neutrons,...)
- certain classes of events can be identified by
 - \rightarrow Trigger of muon veto
 - $\rightarrow~$ Pulse Shape Discrimination
 - IBD-prompt events have electron-like signature
 - high PSD events = background (e.g. nuclear recoil from neutron scattering)
 - \rightarrow inhomogeneity of PMT response (e.g. stopping muons)
 - \rightarrow event topology (e.g. e.m. shower)
- remaining cosmic background can be corrected for by subtraction of reactor on - reactor off data

FOR SOCIETY

Pulse Shape Discrimination

- ▶ fast (~ $\mathcal{O}(1)$ ns) and slow (~ $\mathcal{O}(10)$ ns) scintillation component
- ▶ high dE/dx particles populate higher fraction of slow component $\rightarrow Q_{\rm tail}/Q_{\rm tot}$
- \blacktriangleright energy dependent, conservative PSD cut applied, to avoid cutting ν events

- Reactor on-off comparison:
 - \Rightarrow no significant contribution of fast neutrons from reactor observed so far
 - \Rightarrow dominating background: cosmics (as expected)

FOR SOCIETY

Stopped Muon Asymmetry

- muons can pass next to the muon veto and
 - hit the detector:
 - \rightarrow high energy deposit ($\sim 2\,\text{MeV/cm})$
 - \rightarrow stopping muons
 - don't hit the detector:
 - \rightarrow secondaries not vetoed

- stopping muons and Michel e- coincidence $(\tau = 2.2 \,\mu s)$ can mimic IBD events
- ightarrow requires muon to stop within a few cm (2 MeV< $E_{\rm prompt}$ < 8 MeV)
- strongly localised energy deposit (close to PMTs) can be identified using event asymmetry in a cell: Q^{max}_{PMT}/Q_{cell}

Subtraction of Cosmic Background

NEUTRONS FOR SOCIETY

- residual cosmic background has to be subtracted using reactor off data
- ▶ fluctuations in muon flux to be taken into account, e.g. due to atmospheric pressure
- correlation between atmospheric pressure and rate of coincident events extracted from combined fit of reactor on and off data
- renormalisation of rates to reference pressure

Correlation between IBD candidate rate and atmospheric pressure

Measured Neutrinos

Proposal Cuts:

- ► $1.5 \text{ MeV} < E_{\text{Det}}^{\text{prompt}} < 8 \text{ MeV}$ & $E_{\text{GC}}^{\text{prompt}} < 1.1 \text{ MeV}$
- ► 5 MeV $< E_{\text{Det}}^{\text{delayed}} < 10 \text{ MeV}$ && $E_{\text{target}}^{\text{delayed}} > 1 \text{ MeV}$
- PSD @ 2.5 σ
- ► ΔT ≤ 70µs
- Muon veto 100 μ s after muon
- + pressure correction
- + Additional cuts under investigation (e.g. signal asymmetry, topology, multiplicity,)

- cut optimisation studies
- finalisation of energy reconstruction for spectral analysis
- studies of systematics
- ▶ reinstallation of STEREO and restart of data taking (Sep./Oct. 2017)
- \blacktriangleright reactor on data: + 60 days (2017) + \sim 150 days (2018)

Thank you for your attention!

Rencontres du Vietnam - Neutrino - 2017

Status of the STEREO reactor neutrino experiment

30 / 30