Electromagnetic Interactions of Neutrinos

Outline

- Motivation & Introduction
- Exp. Searches & Status
- Many-Body Physics (needed in low-E Exp.)
- Summary

★ For things can not be covered, see, e.g., Giunti & Studenikin, RMP 87, 531(2015)

Motivation & Introduction

Why Study Neutrino EM?

- Basic properties of elementary particles
- Potential new physics
- Implication for astrophysics & cosmology

EM Form Factors (spin-1/2)

charge anomalous mag. dipole

$$\langle p'|j_{\mu}^{(\gamma)}(0)|p\rangle = \bar{u}(p') \begin{bmatrix} F_1(q^2)\gamma_{\mu} - iF_2(q^2)\sigma_{\mu\nu}q^{\nu} \\ + F_A(q^2)\left(q^2\gamma_{\mu} - qq_{\mu}\right)\gamma_5 + F_E(q^2)\sigma_{\mu\nu}q^{\nu}\gamma_5 \end{bmatrix} u(p)$$
anapole el. dipole

- For v's and $q^2=0$: $F_1=mQ$; $F_2=MM$; $F_A=AM$; $F_E=EDM$;
- v charge radius squared:
 6 dF₁/dq²=CR

EM Form Factors (spin-1/2)

charge anomalous mag. dipole

$$\frac{\langle p'|j_{\mu}^{(\gamma)}(0)|p\rangle}{\int} = \bar{u}(p') \begin{bmatrix} F_1(q^2)\gamma_{\mu} - iF_2(q^2)\sigma_{\mu\nu}q^{\nu} \\ + F_A(q^2)\left(q^2\gamma_{\mu} - qq_{\mu}\right)\gamma_5 + F_E(q^2)\sigma_{\mu\nu}q^{\nu}\gamma_5 \end{bmatrix} u(p)$$
anapole el. dipole

- v's oscillate; when i=f "static"; i≠f "transition"
- Static moments: Dirac v's can have all; Majorana
 v's can only have anapole [Kayser, PRD, '82]

Neutrino EMs in the SM

- Charge: zero by construct
- Other moments: tiny from radiative corrections
- If neutrinos are reported to be milli-charged or have anomaly big EM moments: something "new", "wrong", or "background"?!

ν 's MM and EDM in the SM

Consider a Dirac neutrino case:

Naive dimensional analysis

 $\frac{\text{MM}}{\text{EDM}} \sim \frac{e}{4\pi} \frac{G_F}{\sqrt{2}} m_{\nu} \sim \frac{5 \times 10^{-19} \,\mu_{\text{B}}}{5 \times 10^{-30} \,e \,\text{cm}}$

AP and Cosmo. Implication

- Star (Sun, red giant, white dwarf etc.) cooling $\gamma^* \rightarrow \nu + \bar{\nu}$
- Supernova explosion and neutron star cooling
- Big bang nucleosynthesis d.o.f.? $\nu_L \leftrightarrow \nu_R$
- What if a primordial magnetic field exists?
- What if a neutrino decay radiatively? $\nu_i \rightarrow \nu_f + \gamma$

Exp. Searches & Status

Primary Detection Channel

Electron recoil from neutrino-electron scattering

 $\nu + e^- \rightarrow \nu + e^-$

Analysis by change in diff. count rate

$$\frac{d}{dT}R = \frac{d}{dT}R^{(w)} + \frac{d}{dT}R^{(\gamma)}$$

Electrons are bound, so in fact neutrino-ionization

 $\nu + A(e^-) \rightarrow \nu + A^+ + e^-$

Binding effects could be important at low energies

Neutrino-Electron Scattering

• A notable feature:

$$\frac{d\sigma}{dT}^{(0)} \propto T^0, \quad T^{-1}, \quad T^{-2}$$

- Sensitivities to MM and mQ gained by lowering the detector threshold
- Mainstream detectors
 - Semi-cond. germanium: sub-keV few keV
 - Liquid xenon: ~ few keV
 - Liquid scintillator: 100 keV MeV
 - Water Cherenkov: ~ few MeV

Differential Rate

$$\frac{d}{dT}R = \rho_e \int dE_{\nu} \left[\frac{d\sigma}{dT}\right] \left[\frac{d\phi}{dE_{\nu}}\right]$$

- Need diff. cross section
- Need neutrino energy spectra from sources like
 - reactor: ~ MeV
 - solar: 100 keV 20 MeV
 - accelerator: vary
- For long-baseline exps., oscillation effects needed

Effective Neutrino EM Moments

★ Because neutrinos oscillate and final-state neutrinos are not detected, experiments constrain effective EM moments, which are combinations of static and transition moments

• e.g. effective MM:

$$\mu_{\nu_{\ell}}^{2}(L, E_{\nu}) = \sum_{j} \left| \sum_{k} U_{\ell k}^{*} e^{-i\Delta m_{k j}^{2} L/2E_{\nu}} \left(\mu_{j k} - i \varepsilon_{j k} \right) \right|^{2}$$

• In scatteirng, MM & EDM; CR & AM are barely distinguishable at the $m_v \rightarrow 0$ limit

Method	Experiment	Limit	CL	Reference
	Krasnoyarsk	$\mu_{\nu_e} < 2.4 \times 10^{-10} \mu_{\rm B}$	90%	Vidyakin et al. (1992)
	Rovno	$\mu_{\nu_e} < 1.9 \times 10^{-10} \mu_{\rm B}$	95%	Derbin et al. (1993)
Reactor $\bar{\nu}_e$ - e^-	MUNU	$\mu_{\nu_e} < 0.9 \times 10^{-10} \mu_{\rm B}$	90%	Daraktchieva et al. (2005)
	TEXONO	$\mu_{\nu_e} < 7.4 \times 10^{-11} \mu_{\rm B}$	90%	Wong et al. (2007)
	GEMMA	$\mu_{\nu_e} < 2.9 \times 10^{-11} \mu_{\rm B}$	90%	Beda et al. (2012)
Accelerator ν_e - e^-	LAMPF	$\mu_{\nu_e} < 10.8 \times 10^{-10} \mu_{\rm B}$	90%	Allen et al. (1993)
Accelerator $(\nu_{\mu}, \bar{\nu}_{\mu})$ - e^-	BNL-E734	$\mu_{\nu_{\mu}} < 8.5 \times 10^{-10} \mu_{\rm B}$	90%	Ahrens et al. (1990)
	LAMPF	$\mu_{ u_{\mu}} < 7.4 \times 10^{-10} \mu_{ m B}$	90%	Allen et al. (1993)
	LSND	$\mu_{ u_{\mu}} < 6.8 imes 10^{-10} \mu_{ m B}$	90%	Auerbach et al. (2001)
Accelerator $(\nu_{\tau}, \bar{\nu}_{\tau})$ - e^-	DONUT	$\mu_{\nu_{\tau}} < 3.9 \times 10^{-7} \mu_{\rm B}$	90%	Schwienhorst et al. (2001)
Solar u e	Super-Kamiokande	$\mu_{\rm S}(E_{\nu} \gtrsim 5 {\rm MeV}) < 1.1 \times 10^{-10} \mu_{\rm B}$	90%	Liu et al. (2004)
Solar ν_e -e	Borexino	$\mu_{\rm S}(E_{\nu} \lesssim 1{\rm MeV}) < 5.4 \times 10^{-11}\mu_{\rm B}$	90%	Arpesella et al. (2008)

[Giunti & Studenikin, RMP 87, 531(2015)]

Method	Experiment	Limit	CL	Reference
	Krasnoyarsk	$\mu_{\nu_e} < 2.4 \times 10^{-10} \mu_{\rm B}$	90%	Vidyakin et al. (1992)
Method Reactor $\bar{\nu}_e - e^-$ Accelerator $\nu_e - e^-$ Accelerator $(\nu_{\mu}, \bar{\nu}_{\mu}) - e^-$ Accelerator $(\nu_{\mu}, \bar{\nu}_{\mu}) - e^-$	Rovno	$\mu_{\nu_e} < 1.9 \times 10^{-10} \mu_{\rm B}$	95%	Derbin et al. (1993)
	MUNU	$\mu_{\nu_e} < 0.9 \times 10^{-10} \mu_{ m B}$	90%	Daraktchieva et al. (2005)
	TEXONO	$\mu_{\nu_e} < 7.4 \times 10^{-11} \mu_{\rm B}$	90%	Wong et al. (2007)
	GEMMA	$\mu_{\nu_e} < 2.9 \times 10^{-11} \mu_{\rm B}$	90%	Beda et al. (2012)
Accelerator ν_e - e^-	LAMPF	$\mu_{\nu_e} < 10.8 \times 10^{-10} \mu_{\rm B}$	90%	Allen et al. (1993)
Accelerator $(\nu_{\mu}, \bar{\nu}_{\mu})$ - e^-	BNL-E734	$\mu_{\nu_{\mu}} < 8.5 \times 10^{-10} \mu_{\rm B}$	90%	Ahrens et al. (1990)
	LAMPF	$\mu_{\nu_{\mu}} < 7.4 \times 10^{-10} \mu_{\rm B}$	90%	Allen et al. (1993)
	LSND	$\mu_{ u_{\mu}} < 6.8 \times 10^{-10} \mu_{ m B}$	90%	Auerbach et al. (2001)
Accelerator $(\nu_{\tau}, \bar{\nu}_{\tau})$ - e^-	DONUT	$\mu_{\nu_{\tau}} < 3.9 \times 10^{-7} \mu_{\rm B}$	90%	Schwienhorst et al. (2001)
Solar ν_e - e^-	Super-Kamiokande	$\mu_{\rm S}(E_{\nu} \gtrsim 5 {\rm MeV}) < 1.1 \times 10^{-10} \mu_{\rm B}$	90%	Liu et al. (2004)
	Borexino	$\mu_{\rm S}(E_{\nu} \lesssim 1 {\rm MeV}) < 5.4 \times 10^{-11} \mu_{\rm B}$	90%	Arpesella et al. (2008)

□ PDG (2017) adopted

Method	Experiment	Limit	CL	Reference
	Krasnoyarsk	$\mu_{\nu_e} < 2.4 \times 10^{-10} \mu_{\rm B}$	90%	Vidyakin et al. (1992)
	Rovno	$\mu_{\nu_e} < 1.9 \times 10^{-10} \mu_{\rm B}$	95%	Derbin et al. (1993)
Reactor $\bar{\nu}_e$ - e^-	MUNU	$\mu_{\nu_e} < 0.9 \times 10^{-10} \mu_{\rm B}$	90%	Daraktchieva et al. (2005)
	TEXONO	$\mu_{\nu_e} < 7.4 \times 10^{-11} \mu_{\rm B}$	90%	Wong et al. (2007)
Accelerator ν_e - e^-	GEMMA	$\mu_{\nu_e} < 2.9 \times 10^{-11} \mu_{\rm B}$	90%	Beda et al. (2012)
Accelerator ν_e - e^-	LAMPF	$\mu_{\nu_e} < 10.8 \times 10^{-10} \mu_{\rm B}$	90%	Allen et al. (1993)
Accelerator $(\nu_{\mu}, \bar{\nu}_{\mu})$ - e^-	BNL-E734	$\mu_{\nu_{\mu}} < 8.5 \times 10^{-10} \mu_{\rm B}$	90%	Ahrens et al. (1990)
	LAMPF	$\mu_{\nu_{\mu}} < 7.4 \times 10^{-10} \mu_{\rm B}$	90%	Allen et al. (1993)
	LSND	$\mu_{ u_{\mu}} < 6.8 imes 10^{-10} \mu_{ m B}$	90%	Auerbach et al. (2001)
Accelerator $(\nu_{\tau}, \bar{\nu}_{\tau})$ - e^-	DONUT	$\mu_{\nu_{\tau}} < 3.9 \times 10^{-7} \mu_{\rm B}$	90%	Schwienhorst et al. (2001)
Solar ν_e - e^-	Super-Kamiokande	$\mu_{\rm S}(E_{\nu} \gtrsim 5 {\rm MeV}) < 1.1 \times 10^{-10} \mu_{\rm B}$	90%	Liu et al. (2004)
	Borexino	$\mu_{\rm S}(E_{\nu} \lesssim 1 {\rm MeV}) < 5.4 \times 10^{-11} \mu_{\rm B}$	90%	Arpesella et al. (2008)

Both use low-threshold Ge detector
 Threshold: 2.5 (GEMMA) and 5 (TEXONO) keV

Method	Experiment	Limit	CL	Reference
	Krasnoyarsk	$\mu_{\nu_e} < 2.4 \times 10^{-10} \mu_{\rm B}$	90%	Vidyakin et al. (1992)
	Rovno	$\mu_{\nu_e} < 1.9 \times 10^{-10} \mu_{\rm B}$	95%	Derbin et al. (1993)
Reactor $\bar{\nu}_e$ - e^-	MUNU	$\mu_{\nu_e} < 0.9 \times 10^{-10} \mu_{\rm B}$	90%	Daraktchieva et al. (2005)
	TEXONO	$\mu_{\nu_e} < 7.4 \times 10^{-11} \mu_{\rm B}$	90%	Wong et al. (2007)
	GEMMA	$\mu_{\nu_e} < 2.9 \times 10^{-11} \mu_{\rm B}$	90%	Beda et al. (2012)
Accelerator ν_e - e^-	LAMPF	$\mu_{\nu_e} < 10.8 \times 10^{-10} \mu_{\rm B}$	90%	Allen et al. (1993)
Accelerator $(\nu_{\mu}, \bar{\nu}_{\mu})$ - e^-	BNL-E734	$\mu_{\nu_{\mu}} < 8.5 \times 10^{-10} \mu_{\rm B}$	90%	Ahrens et al. (1990)
	LAMPF	$\mu_{ u_{\mu}} < 7.4 \times 10^{-10} \mu_{ m B}$	90%	Allen et al. (1993)
	LSND	$\mu_{ u_{\mu}} < 6.8 imes 10^{-10} \mu_{ m B}$	90%	Auerbach et al. (2001)
Accelerator $(\nu_{\tau}, \bar{\nu}_{\tau})$ - e^-	DONUT	$\mu_{\nu_{\tau}} < 3.9 \times 10^{-7} \mu_{\rm B}$	90%	Schwienhorst et al. (2001)
Solar u o	Super-Kamiokande	$\mu_{\rm S}(E_{\nu} \gtrsim 5 {\rm MeV}) < 1.1 \times 10^{-10} \mu_{\rm B}$	90%	Liu et al. (2004)
Solar ν_e -e	Borexino	$\mu_{\rm S}(E_{\nu} \leq 1 {\rm MeV}) < 5.4 \times 10^{-11} \mu_{\rm B}$	90%	Arpesella et al. (2008)

Water Cherenkov vs. Liquid Scintillator
 Recent update to 3.1x10⁻¹¹ using Borexino data [Cañas et al. '16]

Direct Limits on mQ

ν CHARGE

	VALUE (units: electron charge)	CL%	DOCUMENT ID	TECN	COMMENT
--	--------------------------------	-----	-------------	------	---------

We do not use the following data for averages, fits, limits, etc.

<3	$\times 10^{-8}$	95	¹ DELLA-VALLE	16	PVLA	Magnetic dichroism
<2.1	$\times 10^{-12}$	90	² CHEN	14A	TEXO	Nuclear reactor
<1.5	$\times 10^{-12}$	90	³ STUDENIKIN	14		Nuclear reactor
<3.7	$\times 10^{-12}$	90	⁴ GNINENKO	07	RVUE	Nuclear reactor
<2	$\times 10^{-14}$		⁵ RAFFELT	99	ASTR	Red giant luminosity
<6	$\times 10^{-14}$		⁶ RAFFELT	99	ASTR	Solar cooling

All use data taken by low-threshold Ge detectors
 Indirect astrophysical limits are generally stronger

Direct Limits on CR

TEXONO data taken by CsI in 3-8 MeV range
 Low-threshold detectors not competitive on CR

Future Improvements

- Bigger detector mass
- Longer detecting time
- Smaller background
- More intense beam
- Lower detector threshold

Case 1: Lux-Zeplin

- Turning a multi-ton-scale LXe detector for DM to a precision low-E neutrino detector
- Search mode: electron recoil by ⁵¹Cr neutrinos

Case 2: COHERENT (SNS)

- Multi-detectors aim at measuring coherent elastic neutrino-nucleus scattering
- Search mode: nuclear recoil by stop-pion neutrinos

Nucleus	²⁰ Ne	$^{40}\mathrm{Ar}$	$^{76}\mathrm{Ge}$	$^{132}\mathrm{Xe}$
$\mu_{ u_{\mu}}$	9.09 [2.31]	9.30 [2.47]	8.37 [2.54]	12.94 [2.54]
$\mu_{ar{ u}_{\mu}}$	10.28 [2.53]	10.46 [2.69]	9.39 [2.75]	14.96 [2.74]
$\mu_{ u_e}$	10.22 [2.44]	$10.55 \ [2.60]$	9.46 [2.68]	15.20 [2.68]
$\mu^{ m comb}_{ u_{\mu}}$	8.07 [2.02]	8.24 [2.16]	7.41 [2.22]	11.58 [2.21]

in 10⁻¹⁰ μ_B

Case 2: COHERENT (SNS)

Challenge: Coh. SM b.g. vs. incoh. MM signal

 Calculation done with Ne [Scholberg, PRD '06]

Need sub-MeV threshold!

Might have a better shot with mQ (coherent)

Example 3: JUNO/DUNE

- Both multi-purpose neutrino experiments
- MM of solar neutrinos (JUNO)
- Search for core collapse supernova neutrinos (JUNO/DUNE), which indirectly put limits on MM

Future Improvements

- Bigger detector mass
- Longer detecting time
- Smaller background
- More intense beam
- Lower detector threshold!

Important Physical Scales

- For reactor/solar/supernova neutrinos: $E_{\nu} \sim 100 \text{ keV} - 20 \text{ MeV}$
- Max. energy deposition by m_{ν} to m_{A} : $2E_{\nu}^{2}/(m_{A}+2E_{\nu}) < 10 \text{ keV}$ (if elastic)
- Atomic scales with effective charge Z_{eff} (shell-dep.): $p_e \sim Z_{eff} m_e \alpha$, $E_{\chi} \sim Z_{eff} m_e \alpha^2$, $m_e \alpha = 3.7 \text{ keV}$
- Atomic effects important for low-E neutrino detection!

Many-Body Physics (needed in Low-E Exp.)

What Are Needed?

- Differential cross sections: do/dT for weak and EM interactions (MM, mQ, CR)
- Most difficult: transition matrix elements $\langle f | j_{\mu}^{(w,\gamma)} | i \rangle$ where both *i* and *f* are many-body states
- Are there good approximations or MB problems need to be solved?

Free Electron Approximation

- No atomic calculation needed (almost)
- Validity at sub-keV regimes needs justification

Equivalent Photon Approximation

- AP built-in in exp. data
- MM sensitivity gain?
- Not really Voloshin '10; ...
- Reason: improper $N_{\gamma}(T)$ Chen, CPL, et al, '13

Many-Body Calculations

Hartree-Fock (fitted local ex.)

Fayans, et al., '92; '01; Kopeikin, et al., '97; '03

• FEA + WKB + 2e correlation

Kouzakov, Studenikin, et al., '11; '12; '14

Multi-configuration radom phase approximation

Chen, Chi, CPL, et al., '14; '15

Our Method: MCRRPA

An *ab initio* method based on Hatree-Fock (full ex. treatment) with refinements:

- MC [multi-configuration]: open-shell atoms have more than one g-s configuration for Ge: $|J = 0\rangle = c_1 |[Zn]4p_{1/2}^2\rangle + c_2 |[Zn]4p_{3/2}^2\rangle$
- R [relativistic]: Zα~1/4 for Ge
- RPA [random phase approximation]: residual 2e correlation is important for atomic excited states (in our case Get + e)

Our Results for Ge

- Chen et al., Phys. Rev. D 88, 033006 (2013)
- Chen et al., Phys. Lett. B **731**, 159 (2014)
- Chen et al., Phys. Rev. D 90, 011301(R) (2014)
- Chen et al., Phys. Rev. D **91**, 013005 (2015)

Collaborators: J.-W. Chen, H.-C. Chi, K.-N. Huang, H.-B. Li, C.-F. Liu, H.-T. Shiao, L. Singh, H. T. Wong, C.-L. Wu, C.-P. Wu

Benchmark I: Ge Ground State

• First ion. E: 7.899 eV (exp) vs. 7.856 eV (th.)

Valence configuration	Configuration weight	Percentage
$4p_{1/2}^2$	0.84939	72.15%
$4p_{3/2}^2$	0.52776	27.85%

MC is needed!

Rel. effect

• Single particle energies of subshells:

	$K(1s_{\frac{1}{2}})$	$L_I(2s_{\frac{1}{2}})$	$L_{II}(2p_{\frac{1}{2}})$	$L_{III}(2p_{\frac{3}{2}})$	$M_I(3s_{\frac{1}{2}})$	$M_{II}(3p_{\frac{1}{2}})$	$M_{III}(3p_{\frac{3}{2}})$	$M_{IV}(3d_{\frac{3}{2}})$	$M_V(3d_{\frac{5}{2}})$	$N_I(4s_{\frac{1}{2}})$	$N_{II}(4p_{\frac{3}{2}})$	$N_{III}(4p_{\frac{1}{2}})$
s.p.	11 185.5	1454.4 1414 6	1287.9 1248 1	1255.6	201.5	144.8 124 9	140.1 120.8	43.8 29.9	43.1 29 3	15.4	8.0	7.8
cuge	11105.1	1414.0	1240.1	1217.0	100.1	124.5	120.0	25.5	23.3			

To test Ge ex. states, we chose photoionization

Benchmark II: Ge Photoionization

Ge AI by MM

Ge Al by mQ

Implication

Compared with FEA, atomic effects of Ge at keV lead to

- a slightly weaker limit on MM (but more reliable)
- a much stronger upper limit on mQ

 \bigstar (Low-E) Ge data not competitive to CsI data in CR

Recent Work on Xe

• Chen et al., arXiv:1610.04177

Benchmark: Xe Photoionization

Solar Neutrino-Xenon Scattering

Low-E Solar Neutrino Rate

Assume 1-ton liquid xenon & 1-year exposure

FE overestimate!

Conclusions

- Neutrino EM properties could be windows for new physics.
- Low-threshold detectors is an efficient way to increase sensitivity.
- Atomic binding effects are important at low energies and can be calculated reliably.
- Similar studies can be applied to light dark matter detection.