Radon emanation studies in the SuperNEMO double beta decay experiment

Hugon Christophe
Université Aix-Marseille, CPPM, IN2P3/CNRS
on behalf of the SuperNEMO collaboration
The double beta decay

For some isotopes as the 82Se only the $\beta\beta$ decay is allowed

Gives an access to 3 fundamental informations

- Neutrino nature (Dirac or Majorana)
- Effective mass ν_{ee}
- Neutrino mass hierarchy

The both decays have a different energy spectrum

$$T^{1/2}(2\beta 0\nu) \propto \frac{1}{|M|^2 |m_{\beta\beta}|^2}$$
The calorimetry/tracking technology
From NEMO-3 to SuperNEMO

NEMO-3 (2003 - 2011)

SuperNEMO démonstrateur (≥ 2016)

The calorimetry/tracking technology
- Has a lower efficiency
- Poor energy resolution (8%@1MeV for SuperNEMO)

But
- It has a good electron identification and $\beta\beta$ kinematics
- It can identify other particles ($\alpha, \gamma, \beta^+, \beta^-$)
- It can be multi-sources
- Background identification an rejection
- Multi-channel study $\beta\beta0v, \beta\beta2v, \beta\beta^*$, ...

→ GERDA, KamLAND-Zen, CUORE, ...

→ EXO, NEMO-3, SuperNEMO
SuperNEMO demonstrator sources

- Source
 - 7 kg of $^{82}\text{Se} \Leftrightarrow 17.5 \text{ kg.yr}$
 - $\sim 40 \text{ mg/cm}^2$
 - $T_{1/2}(2\nu\beta\beta) = 10.3 \pm 0.3 \text{ (stat)} \pm 0.7 \text{ (syst)} 10^{19} \text{ y}$
 - $Q_{\beta\beta} = 2,966 \text{ MeV}$
SuperNEMO demonstrator tracker

- 2034 wires in Geiger mode in each module (~45 km of wires)
- Ultra pure material (copper, steel, duracon, HPGe tested)
- 3d track reconstruction
SuperNEMO demonstrator calorimeter walls

- Calorimeter
 - 520 x 8” PM + 192 x 5” PMs coupled with polystyrene scintillators
 - Energy resolution: 8% FWHM @ 1 MeV
 - Time resolution: σ = 400 ps @ 1 MeV
SuperNEMO demonstrator status

- Calorimeter on site, under commissioning
- Source foils radiopurity test ongoing at Canfranc (BiPo detector)
- The demonstrator data taking will start by the end of 2017
SuperNEMO demonstrator sensitivity

- Train BDTs to discriminate signal events from background events
- Radiopurity requirements: $A^{208}\text{Tl}) = 2 \mu\text{Bq/kg}$, $A^{214}\text{Bi}) = 10 \mu\text{Bq/kg}$
- and $A(\text{Radon}) = 150 \mu\text{Bq/m}^3$
- Half-life limit as a function of the background contamination levels:

Steven calvez
Moriond 2017
The background noise

- External γ, if not tagged
 - Origin: detector radioactivity, neutrons and cosmics
 - Underground (Modane, 4800 m e.w.), shielding (steel and water), E < 2.6 MeV
 ⇒ background for ββ2ν

- Internal contamination in β emitter with $Q_β ≥ Q_{ββ} ∼ 3$ MeV
 - 214Bi in 238U chain ($Q_β = 3.3$ MeV)
 - 208Tl in 232Th chain ($Q_β = 4.9$ MeV)

- Radon inside tracking detector
 - decay then deposit of daughter on wire and foil surfaces
 - feed internal contamination in 214Bi

Diagram:

- Pair creation
- Compton + Möller
- Double Compton
The background noise

- **External γ, if not tagged**
 - Origin: detector radioactivity, neutrons and cosmics
 - Underground (Modane, 4800 m e.w.), shielding (steel and water), $E < 2.6 \text{ MeV}$ ⇒ background for $ββ2ν$

- **Internal contamination in $β$ emitter with $Q_β \geq Q_{ββ} \sim 3 \text{ MeV}$**
 - ^{214}Bi in ^{238}U chain ($Q_β = 3.3 \text{ MeV}$)
 - ^{208}Tl in ^{232}Th chain ($Q_β = 4.9 \text{ MeV}$)

- **Radon inside tracking detector**
 - decay then deposit of daughter on wire and foil surfaces
 - feed internal contamination in ^{214}Bi
The background noise

- External γ, if not tagged
 - Origin: detector radioactivity, neutrons and cosmics
 - Underground (Modane, 4800 m e.w.), shielding (steel and water), E < 2.6 MeV
 ⇒ background for ββ2ν

- Internal contamination in β emitter with $Q_\beta \geq Q_{\beta\beta} \sim 3$ MeV
 - 214Bi in 238U chain ($Q_\beta = 3.3$ MeV)
 - 208Tl in 232Th chain ($Q_\beta = 4.9$ MeV)

- Radon inside tracking detector
 - decay then deposit of daughter on wire and foil surfaces
 - feed internal contamination in 214Bi
The background noise

- External γ, if not tagged
 - Origin: detector radioactivity, neutrons and cosmosics
 - Underground (Modane, 4800 m e.w.), shielding (steel and water), $E < 2.6$ MeV
 ⇒ background for $\beta\beta2\nu$

- Internal contamination in β emitter with $Q_\beta \geq Q_{\beta\beta} \sim 3$ MeV
 - ^{214}Bi in ^{238}U chain ($Q_\beta = 3.3$ MeV)
 - ^{208}Tl in ^{232}Th chain ($Q_\beta = 4.9$ MeV)

- Radon inside tracking detector
 - decay then deposit of daughter on wire and foil surfaces
 - feed internal contamination in ^{214}Bi

Under construction demonstrator
- 7 kg of ^{82}Se
- BG 10^{-4} evt/keV/kg/y
- $|m_{\beta\beta}| < 0.2\text{-}0.4$ eV in 2,5 years

^{222}Rn is a major BG
The 150µBq/m3 goal is hard to reach, but also to control:
Radon contamination measurements
The radon measurements among the SuperNEMO collaboration

- CENBG Bordeaux
- UCL London
- IEAP CTU Prague
- CPPM Marseille
R&D on low background studies in the SuperNEMO CPPM group

- Proportional spherical detector for continuous survey of radon rate in SuperNEMO gas
- Charcoal radon trap testing for the SuperNEMO gas purification
- Radon transportation in the SuperNEMO gas studies
- Radon Emanation of material depending on the gas nature (helium, humidity, ethanol...
The radon transportation in the detector

- **Principle:**
 - Continuous purified gas flushing in the detector wire chamber
 - Order of magnitude $1 \text{ m}^3/\text{h}$
 - ^{222}Rn goal for SuperNEMO $150 \mu\text{Bq/m}^3$
 - Gas recycling system for SuperNEMO
The radon transportation in the detector

Fluid mechanics, electrostatic and neutralization/decays simulation to estimate the radon transportation in the wire chamber

A better knowledge of the radon distribution in the detector would improve the total sensitivity

⇒ Fluid mechanics, electrostatic and neutralization/decays simulation to estimate the radon transportation in the wire chamber
The experimental setup of radon transportation measurements

- Objective: Estimation of deposit of $^{218}\text{Po}^{2+}$ in the SuperNEMO chamber wires → simulation FEM and experimental measurements
- Simpler setup for calibration/validation of simulation and measurements
- Measurement of ethanol role transportation/neutralization

- kBq/m³ of radon in the input gas
- 1 kV/cm between electrodes
- The deposit on the anode is measured with an Ge detector

Diagram:
- Gas input (nitrogen, helium)
- **Source:** Rn 222
- **Ethanol:** 5%
- **Lucas Cell**
- **^{222}Rn**
 - $3,82\text{ j}$
- **^{218}Po**
 - 3 min
- **^{214}Bi**
 - $19,7 \text{ min}$
- **^{214}Po**
 - $164 \mu\text{s}$
 - **^{210}Bi**
 - 5 j
 - **^{210}Po**
 - 138 j
 - ^{206}Pb
 - stable

- Gas exit

July 2017
C. Hugon, rencontre du Vietnam 2017
17
The experimental setup of radon transportation measurements

- Objective: Estimation of deposit of $^{218}\text{Po}^{2+}$ in the SuperNEMO chamber through wire→simulation FEM and experimental measurements
- Simpler setup for calibration/validation of simulation and measurements
- Measurement of ethanol role transportation/neutralization
- 1kBq/m^3 of radon in the input gas
- 1kV/cm between electrodes
- The deposit on the anode is measured with a Ge detector
The fluid mechanics simulation

- Finite Element Method: ElmerFEM
 - Electrostatic
 - Fluid Mechanics
 - Time dependence

- Custom step-by-step simulation
 - Taking elmer data as input
 - Transportation of $^{222}\text{rn}/^{218}\text{po}^{2+}$ in in the flux
 - Decays/neutralization based on the half-life time

- Experimental measurement and simulation done with 0% and 4% of ethanol in the gas.

- Once validated and calibrated, it will be applied to the SuperNEMO volume
The first results and by-product

- The first results showed an disagreement between the experimental data and simulation! (roughly 2 times experimental excess in the 4% ethanol case)

- Hypothesis:
 - There’s a known humidity effect that increase the emanation rate (IJSR, ISSN (Online): 2319-706)
 - The radon emanation from the source material is also dependent to the rate of ethanol in the gas?

- Inverting the source and ethanol in the circuit suppressed this effect

- By-product measurement: emanation rate of the source with and without ethanol in the gas
Measurement of the radon emanation with ethanol exposure

- The common radon detector is based on the detection of $^{218}\text{Po}^{2+}$ thanks to an electrostatic collection of alpha-emitters.
- The presence of alcohol neutralizes the $^{218}\text{Po}^{2+}$ and makes the measurements unreliable.

A Lucas cell has been used instead.
Measurement with “dried” source then exposed to ethanol

The measurement has 3 zones:
1) Rising until the equilibrium of the source activity and the Lucas cell volume
2) Flushing with dry nitrogen: stable (slow decrease)
3) Ethanol (4%): activity multiplied by ~2

The source emanation measurements showed increase mean of 1.7!

A different setup based on sample injection and germanium detector indirect measurement validated this result at 3σ.

There is a strong dependence on ethanol rate and source emanation
The radio-purity should be measured taking this effect in account
Summary, conclusions and perspectives

● SuperNEMO detector
 - Calorimeter/tracking technology validated by NEMO-3, used by SuperNEMO
 - The data taking should start by the end of the year
 - Sensitivity $T_{1/2}^{0v} \sim 10^{24}$ years ($T_{1/2}^{0v} \sim 10^{26}$ years for full detector)

● Radon measurement R&D
 - Expertises from the NEMO-3 experiment (emanation chambers, gas circulation etc.)
 - New innovative radon studies (transportation) for very low background experiments
 - Evidences for material emanation in function of the nature of gas (ethanol rate)
 • Essential for very low background experiment! New 222Rn detector under development
 • The material radio-purity measurements have to be done in the experimental gas
 • Work still under progress (humidity, helium, nitrogen etc...)

backup
The Double beta decay and the mass hierarchy

\[
\left(T_{1/2}^{0\nu} \right)^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2
\]

\[
\langle m_{\beta\beta} \rangle \equiv \left| \sum_i m_k U_{e_k}^2 \right|
\]

\[
m_{\nu_e} = \left(\sum_i |V_{ei}|^2 m_i^2 \right)^{1/2}
\]

The measurement of the double beta decay lifetime and the PMNS angle values gives an access to the hierarchy:

- **NH**: \(\langle m_{ee} \rangle = [4;0] \) meV
- **IH**: \(\langle m_{ee} \rangle = [60;15] \) meV & \(m_{\nu_e} \sim 40 \) meV

Nemo-3 \(^{100}\)Mo result: 300-900 meV

SuperNEMO goal: 50-100 meV
Results with source, no alcohol

The source has been directly used, from ambient air (and “normal” humidity)
The flushing gas is dried nitrogen, at 10 l/h
The preparatory measurement has been done for 17 hours. 2 zones are observed:
1) Flushing period: the radon come to equilibrium between the source and the Lucas cell,
2) The “stable” zone

The measurement seems stable and reliable

The slow decreasing will be explained later.
Test of the Lucas cell stability and alcohol sensitivity

To test the Lucas cell (PMT gain fluctuations, noise fluctuations) the Lucas was left without gas flushing, with and without alcohol injection:

1) No flushing, we see the decreasing of the 222Rn decay rate (3.8 days) from the previous measurement

2) ~5 hours of 5% alcohol nitrogen flushing

3) No flushing (the alcohol remains inside the cell)

No counting rate fluctuations
No alcohol impact
A word about the source and its preparation

- We have two kinds of source
 - Rocks
 - Centimeter sized
 - Porous?
 - The recipient contains smaller rocks (mm) and dust
 - Clock hands
 - Millimeter sized
 - Less porous than rock?

- The drying out process has been automatized
 - At 150°
 - The recipient is emptied and fill back each minutes during 15 min cycles
 - A cycle each 30 min during a full night

- We are thinking to do it with the tested gas (now using ambient air)
Why a different setup

- To have a detector that is not exposed to the gas mixture (totally independent to the ethanol/humidity rates)
- To cross check the result with another way to measure it
- Idea:
 - Injection in a small bottle of source gas
 - Measurements done thanks to a germanium detector (214Bi 609 keV gamma rays)
Summary of the new setup

The setup is mostly the same:

- The source is exposed to the gas during one hour
- The sample bottle is under vacuum (50 mbar)
- The vans are open such a way that the sample bottle fill itself with the gas from the source
- Then the bottle is closed and placed in a germanium detector to measure the gas activity

The result is given in “hit”, the interesting point is to get a relative result with and without ethanol
Summary of the first results and remarks

- The measurements gave a relative difference of \(\sim 1.6 \text{ at } 3\sigma \) between dried out and ethanol exposed sources.
- This setup much harder to manage (complex protocol) so it has bigger systematics errors.
- Even if during the measurement protocol weakness has been identified, few measurements have been excluded (only them with clearly identified errors).

<table>
<thead>
<tr>
<th>Nb Measurements</th>
<th>Dried out source</th>
<th>5% ethanol + source</th>
<th>Totals, difference & sigma total</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>15</td>
<td>Total: 47</td>
<td></td>
</tr>
<tr>
<td>609 keV (\gamma) hits mean</td>
<td>359</td>
<td>578</td>
<td>Difference: 219</td>
</tr>
<tr>
<td>Errors</td>
<td>+/-52</td>
<td>+/-51</td>
<td>+/-73</td>
</tr>
</tbody>
</table>

It validates previous measurements at \(3\sigma \)
Need to reach \(5\sigma \)?
Radon and thoron decay chains

Radon
(Chain of 238U)

- **222Rn**
 - 3.82 j
 - 5.5 MeV

- **218Po**
 - 3.05 min
 - 6 MeV

- **214Bi**
 - 19.9 min
 - 21.7 MeV

- **214Po**
 - 1.65 x 10^{-4} s
 - 21.7 MeV

- **210Pb**
 - 22.2 ans

- **210Bi**
 - 5.01 j

- **210Po**
 - 138 j
 - 5.3 MeV

- **206Pb**
 - stable

Thoron
(Chain of 232Th)

- **220Rn**
 - 55.6 s

- **216Po**
 - 0.15 s
 - $E_\alpha = 6.3$ MeV

- **212Bi**
 - 60.55 min
 - $E_\alpha = 6.8$ MeV

- **212Pb**
 - 10.64 h
 - 16%

- **210Po**
 - 2.98 x 10^{-7} s
 - 64%

- **208Tl**
 - 3.053 min

- **208Pb**
 - stable

Remarks:
- The two decay chains are identical in the chemical point of view.
- The main difference comes from the periods: 56 seconds for the thoron and
 3.8 days for the radon.
Some experimental results
(from Roger Abou-Khalil thesis):

<table>
<thead>
<tr>
<th>Source</th>
<th>Isotope</th>
<th>Time/s</th>
<th>Humidity</th>
<th>Charge Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renoux (1965)</td>
<td>^{218}Po</td>
<td>air</td>
<td>-</td>
<td>air ambiant</td>
</tr>
<tr>
<td>Raabe (1968)</td>
<td>^{218}Po</td>
<td>air</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Porstendörfer (1979)</td>
<td>^{218}Po</td>
<td>air</td>
<td>au moment de formation</td>
<td>≥95</td>
</tr>
<tr>
<td>Dua (1981)</td>
<td>Descendants du ^{222}Rn</td>
<td>air</td>
<td>0.046</td>
<td>16 – 19</td>
</tr>
<tr>
<td>Dankelmann et al. (2001)</td>
<td>^{218}Po</td>
<td>air</td>
<td>-</td>
<td>air ambiant</td>
</tr>
<tr>
<td>Porstendörfer (2005)</td>
<td>^{218}Po</td>
<td>air</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- In most cases positively charged, ~80%
- Exact conditions of measurement are important!
- Typical voltage in these experiments ~ 500 V/cm
From NEMO-3 to SuperNEMO

- Tracker + calorimetric experiment searching for $0\nu\beta\beta$ decay
- 5 years of effective data taking
- 10 kg total of different $\beta\beta$ isotopes
reconstruction
The reconstruction of the events and NEMO3 spectrums

Event reconstruction
C. Hugon Ph.D (NAT++)
Muon flux per depth

$M_{\text{we}} \sim 2.5 - 3 \times \text{depth}$