

# The SNO+ Experiment

#### Nuno Barros on behalf of the SNO+ Collaboration



Rencontres du Vietnam: Neutrinos Qui Nhon, Vietnam, July 2017

## The SNO+ Collaboration



# 120 members23 institutions5 countries

- University of Alberta
- Armstrong Atlantic State University
- University of California, Berkeley/LBNL
- Boston University
- Brookhaven National Laboratory
- University of Chicago
- University of California, Davis
- Technical University of Dresden

- Lancaster University
- Laurentian University
- LIP (Lisbon and Coimbra)
- University of Liverpool
- Universidad Nacional Autonoma de Mexico
- University of North Carolina
- Norwich University

- University of Oxford
- University of Pennsylania
- Queen's University
- Queen Mary University of London
- · SNOLAB
- University of Sussex
- TRIUMF
- University of Washington

## SNOLAB Facility

- Located in Creighton Mine, Sudbury, Canada
- ~2070 m overburden (6000 m.w.e.)
- μ rate: 0.28 μ d<sup>-1</sup> m<sup>-2</sup>





# The SNO+Detector

- SNO+ = successor to Sudbury Neutrino Observatory (SNO)
  - Replace heavy water with liquid scintillator
- Support structure holding ~9300 PMTs
  - ~50% coverage with concentrators
- ~63 muons/day in the detector
- Class-2000 clean room
- Target volume in 6 m radius acrylic vessel
- 7000 t ultra pure water shielding
  - 1700 t internal
  - 5300 t external



# Detector Upgrades

- Upgrades to reflect new objectives
- Replace heavy water with liquid scintillator
  - Load with <sup>130</sup>Te for  $0\nu\beta\beta$  search
- Hold-down ropes
  - Compensate for lower density of scintillator
- Upgraded electronics
  - Handle higher event rates (> 1 kHz)
- Repaired PMTs
  - Maximize coverage
- New calibration system
  - Minimize source deployment



# Detection principle

- Organic Scintillator (LAB+PPO) produces light when excited by charged particles
  - ~10000 photons/MeV
  - Few hundred detected by PMTs
  - ~20 m attenuation length
- Calorimetric measurement + pulse shape
  - Event energy from number of photons
  - Even position from photon time-of-flight
- α-β separation through decay-time
  - Background tagging by coincidence techniques





Separation α-β is possible

# SNO+ physics program

- Main objective:
  - Search for  $0v\beta\beta$  in <sup>130</sup>Te
- Other topics of interest
  - Solar neutrinos
  - Nucleon decay
  - Supernova neutrinos
  - Reactor neutrinos
  - Geo-neutrinos



# Ovßß decay

#### Neutrino-less double beta decay



 $(A,Z) \rightarrow (A,Z+2) + 2e^{-2}$ 

#### If observed:

- Neutrinos are Majorana particles
- Lepton number violation:  $\Delta L = 2$
- Input on absolute v mass scale and hierarchy

#### **Experimental signature**



#### Approach:

- Search for peak in energy spectrum at end of 2νββ spectrum
- Aim for low background, good energy resolution and large isotope mass

# Ovββ decay with SNO+

- Load the scintillator with Te
- Double beta decay isotope: <sup>130</sup>Te
  - Long  $2\nu\beta\beta$  half-life: ~  $7x10^{20}$  years
  - High Q-value : ~2.5 MeV
  - High natural abundance: ~30%
  - No absorption lines in PMT sensitive region
  - Scalable: by increasing loading
- Loading method: Te acid + butanediol (TeBD)
  - Initially loading 0.5% (funding secured)
    - ~1330 kg of <sup>130</sup>Te
  - Good optics: transparent, low scattering



#### **SNO+** advantages

- Scalable loading
- Low backgrounds
  - External shielding
  - Scintillator self-shielding
  - LAB purification

### SNO+ 0vββ backgrounds



### SNO+ 0vßß backgrounds

Irreducible:

• <sup>8</sup>B solar neutrinos



### SNO+ 0vßß backgrounds

- Internal backgrounds:
  - · Cosmogenic
    - <sup>60</sup>Co, <sup>131</sup>I, <sup>110m</sup>Ag, <sup>124</sup>Sb, <sup>11</sup>C
  - Scintillator cocktail
    - <sup>238</sup>U, <sup>232</sup>Th, <sup>210</sup>Po, <sup>14</sup>C
  - Thermal neutrons
    - · Capture on H

- Irreducible:
  - <sup>8</sup>B solar neutrinos



### SNO+ 0vßß backgrounds

- Internal backgrounds:
  - · Cosmogenic
    - <sup>60</sup>Co, <sup>131</sup>I, <sup>110m</sup>Ag, <sup>124</sup>Sb, <sup>11</sup>C
  - Scintillator cocktail
    - <sup>238</sup>U, <sup>232</sup>Th, <sup>210</sup>Po, <sup>14</sup>C
  - Thermal neutrons
    - · Capture on H
- External backgrounds:
  - Acrylic vessel (AV)
    - Radon daughters (<sup>210</sup> Pb, <sup>210</sup> Bi, <sup>210</sup> Po)
  - AV, PMTs,  $H_2O$ , Ropes
    - Bi and TI

- Irreducible:
  - <sup>8</sup>B solar neutrinos



# SNO+ background model

#### <sup>8</sup>B solar v ES

• Mostly flat spectrum in ROI

#### External y's

- From AV, ropes, water, PMTs
- FV cut at 3.5 m (20%)
- PMT timing

 $2\nu\beta\beta$  decay from <sup>130</sup>Te

• Asymmetric ROI

Internal U/Th

- <sup>214</sup>BiPo, <sup>212</sup>BiPo
- Delayed coincidence





- <sup>60</sup>C, <sup>110m</sup>Ag, <sup>88</sup>Y, <sup>22</sup>Na,...
- Purification, cooldown (Te already underground)

(a, n)

- Thermal neutron capture
- Delayed coincidence

#### Detector calibration

#### Multiple calibration systems in place

- "Laserball" : light diffuser
  - Optical parameters of the detector
  - Attenuation, angular response of PMTs
- Deployed radioactive sources
  - Various sources for different purposes
  - Tagged sources for known energies
  - Energy scale and resolution
  - Collection efficiency



#### Detector calibration

#### Internal calibration system [JINST 10, P03002 (2015)]

- Optical fibers mounted in PMT structure
- Uses fast LEDs and fibers for multiple measurements:
  - timing
  - gain
  - scattering
  - late light
- Continuous monitoring of stability
- No source insertion
- **Underwater cameras** 
  - Improve resolution in source position



# $SNO+OV\beta\beta$ spectrum

- Details
  - LAB+PPO (2g/L)+bisMSB(15mg/L)
  - FV 3.5 m (20%)
  - > 99.99% rejection <sup>214</sup>BiPo
  - 98% rejection <sup>212</sup>BiPo
  - 390 hits/MeV
- Assumptions
  - NME = 4.03 (IBM-2)
  - gA = 1.269
  - $G = 3.69 \times 10^{-14} \text{ y}^{-1}$



- Expected spectrum after 5 year run
  - $m_{\beta\beta} = 100 \text{ meV}$
  - 0.5% Te loading (~1330 kg 130Te)

## SNO+ sensitivity



phase II goal

|                                       | 1 year | 5 years |
|---------------------------------------|--------|---------|
| T <sub>1/2</sub> [10 <sup>26</sup> y] | 0.80   | 1.96    |
| m <sub>ββ</sub> [meV]                 | 75.2   | 47.1    |

### Other physics goals

| Water Phase                                        | Scintillator Phase | <sup>130</sup> Te loaded Scintillator Phase |
|----------------------------------------------------|--------------------|---------------------------------------------|
| NOW                                                | late 2017          | late 2018                                   |
| Nucleon Decay                                      |                    |                                             |
|                                                    |                    | Ονββ                                        |
|                                                    | Solar Neutrinos*   |                                             |
|                                                    | Geo-neutrinos      |                                             |
|                                                    | Reactor Neutrinos  |                                             |
| Supernova Neutrinos                                |                    |                                             |
| Background Studies                                 |                    |                                             |
| * low energy solar neutrinos after Te-loaded phase |                    |                                             |

### Nucleon decay



- Look for invisible decay modes
  - $\stackrel{16}{O} \longrightarrow \stackrel{15}{O} \stackrel{*}{or} \stackrel{15}{N} \stackrel{*}{+} \sim 5 \text{ MeV } \gamma$
- Sensitivity
  - $\tau_n = 1.2 \times 10^{30}$  years (current limit [KamLAND] : 5.8×10<sup>29</sup>)
  - $\tau_p = 1.4 \times 10^{30}$  years (current limit [SNO] : 2.1×10<sup>29</sup>)

# Solar Neutrinos

- Solar neutrinos probe astrophysics and elementary particle physics models:
  - Solar metallicity (CNO)
  - Neutrino oscillations (pep)
- SNO+ solar neutrino goal: pep/CNO solar neutrino measurement
  - Low <sup>11</sup> C background thanks to depth (100 times lower than Borexino)
  - Low energy threshold thanks to LAB





### Reactor and geo-neutrinos

- Detection through inverse beta decay
  - Delayed coincidence  $e^+$  annihilation and n capture
- · Geo
  - U, Th and K in Earth's crust and mantle
  - Investigate origin of the heat produced within Earth
- Reactor
  - 3 nearby reactors dominate flux
  - Precision probe of neutrino oscillations







- Repaired leaks in cavity
- Replaced repaired PMTs
- Commissioning of internal calibration systems (LED/laser)
- Commissioning of electronics upgrades with high event rates
- Commissioning of DAQ system





- Scintillator purification plant installed and being commissioned
- Started LAB shipments underground
- TeA stored underground
- Started construction of Te purification plant



#### Scintillator purification plant underground

- Detector filled with water
- Laser and <sup>16</sup>N source calibrations
- Water phase data taking has begun
- Commissioning of upgrades ongoing
- Blind data taking since May



Detector filled with water



Camera picture while lowering optical calibration source ("laserball")



#### Muon candidate





#### Double Muon candidate

"Grazing" Muon candidate



Muon candidates





Atmospheric neutrino candidate event, upward going, no OWLs, large number of hits (Feb 2017)



Downward going atmospheric neutrino candidate event, no OWLs, large number of hits

## Conclusion

- SNO+ is a large liquid scintillator detector with broad physics program
  - Ονββ is the primary goal
- The detector is currently filled with water and taking data
- Scintillator purification system is being commissioned
- Tellurium systems under construction
- Neutrinoless double beta decay phase will begin in late 2018
- Water results coming soon