July 20th, 2017 Quy Nhon, Vietnam

Rencontres du Vietnam

uly 16 – 22, 2017 • ICISE • Quy Nhon, Vietnam

CREDIT: REVIVED UNDURY

A ¹⁰⁰Mo pilot experiment with scintillating bolometers and related CUPID activities

Andrea Giuliani

CNRS/CSNSM, Orsay, France DISAT, University of Insubria, Como, Italy

Outline

 \succ CUPID: a next-generation $0v2\beta$ bolometric experiment

- > The ¹⁰⁰Mo way: LUMINEU → CUPID-Mo
- Surface sensitivity: the CROSS project

Outline

\succ CUPID: a next-generation $0v2\beta$ bolometric experiment

- > The ¹⁰⁰Mo way: LUMINEU → CUPID-Mo
- Surface sensitivity: the CROSS project

CUPID

Follow-up to CUORE with background improved by a factor 100

- ➢ Keep high energy resolution of CUORE (< 10 keV FWHM)</p>
- Reduce / control background from materials and from muon /neutrons
- Optimize the enrichment-purification-crystallization chain
- \succ Improve detector technology to get rid of α / surface background

CUPID goal

CUPID goal

CUPID

Follow-up to CUORE with background improved by a factor 100

- ➢ Keep high energy resolution of CUORE (< 10 keV FWHM)</p>
- Reduce / control background from materials and from muon /neutrons
- Optimize the enrichment-purification-crystallization chain
- > Improve detector technology to get rid of α / surface background

CUPID – pilot experiments

- Keep high energy resolution of CUORE (< 10 keV FWHM)</p>
- Reduce / control background from materials and from muon /neutrons
- Optimize the enrichment-purification-crystallization chain
- > Improve detector technology to get rid of α / surface background

CUPID – pilot experiments

- Keep high energy resolution of CUORE (< 10 keV FWHM)</p>
- Reduce / control background from materials and from muon /neutrons
- Optimize the enrichment-purification-crystallization chain
- > Improve detector technology to get rid of α / surface background

Outline

\succ CUPID: a next-generation $0v2\beta$ bolometric experiment

> The ¹⁰⁰Mo way: LUMINEU → CUPID-Mo

Surface sensitivity: the CROSS project ero

Interest of ¹⁰⁰Mo as a $0\nu2\beta$ emitter

Caveats (but not showstoppers)

> $T_{1/2}(2\nu) = 7.1 \times 10^{18} \text{ y} - \text{the fastest one in all } 0\nu 2\beta$ candidates

²¹⁴Bi line at 3054 keV – B.R. 0.021 % - Compton edge 2818 keV

Viable Mo-based crystals

Crystals succesfully tested so far as scintillating bolometers:

 $CdMoO_4$ $PbMoO_4$ $SrMoO_4$ $CaMoO_4$ $ZnMoO_4$ Li_2MoO_4 AMoRE *See C. Nones' talk*

Drawbacks:

- > Necessity of ⁴⁸Ca depletion
 - Radiopurity (difficult to purify Ca from U, Th, Ra)

LUMINEU

Initial choice (2012): ZnMoO₄

First tests on large Li₂MoO₄ crystals: spring 2014

Astropart. Phys. 72, 38 (2016)

Selection of Li₂MoO₄ for a pilot experiment (March 2016)

- Better bolometric performance
- Easy crystallization / excellent quality
- Outstanding radiopurity

Caveats

- Hygroscopic material
- ➢ ⁴⁰K is natural contaminant
- Lower light yield (~0.8 keV/MeV)

Preparing a ¹⁰⁰Mo experiment

Funding / resources from

- ANR (France) main fund provider (LUMINEU: 2012-2017)
- CEA-Saclay substantial funds / PhD
- CSNSM direction funds for crystals (« AP interne »)
- EDELWEISS underground facility, electronics & DAQ
- IN2P3 dedicated personnel (Post-Doc, technician)
- ➢ KINR Kiev radiopure scintillator know-how, simulation, enriched ¹⁰⁰Mo
- ➢ ITEP Moscow − enriched ¹⁰⁰Mo
- NIIC Novosibirsk crystals
- INFN / LUCIFER (LNGS / Rome) underground facility and manpower for R&D

Extension of the Mo collaboration: CUPID-Mo

Fudan Shanghai USTC Hefei China

MoU in preparation

Li₂MoO₄: purification and crystallization

From 2013 to 2016, a series of important milestones were achieved:

- Mo purification / crystallization protocol (NIIC, Novosibirsk, Russia) (Mo irrecoverable losses < 4%)</p>
- Selection of the appropriate Li₂CO₃ powder for compound formation
- Successful program to control internal content of ⁴⁰K [(from ~60 mBq/kg to < 5 mBq/kg)</p>

 \rightarrow Random coincidences: $2\nu 2\beta + {}^{40}K << 2\nu 2\beta + 2\nu 2\beta$

Efficient use of existing ~10 kg of ¹⁰⁰Mo (A.I. 96-99%) (~9 kg to ITEP-Moscow and ~1 kg to KINR-Kiev) (MoU among IN2P3 / INFN / ITEP – February 2015)

Natural isotopic abundance: 9.7%

NIM A 729, 856 (2013) JINST 9, P06004 (2014) EPJC 74, 3133 (2014) JINST 10, P05007 (2015) http://arxiv.org/abs/1704.01758 (submitted to EPJC)

1 2 3 4 5 6 7 8 9 10

2017

Li₂¹⁰⁰MoO₄ scintillating bolometers: a mature technology

Multiple tests with **natural and enriched crystals** (2014-2017) in LSM and LNGS http://arxiv.org/abs/1704.01758 with outstanding results in terms of:

Reproducibility **Energy resolution** Energy resolution α/β separation power \rightarrow > 99.9 % Internal radiopurity \rightarrow < 5 – 10 µBq/kg in ²³²Th, ²³⁸U; < 5 mBq/kg in ⁴⁰K

excellent performance uniformity

- \rightarrow ~4-6 keV FWHM in Rol

 \rightarrow

Compatible with b ≤ 10⁻⁴ [counts/(keV kg y)]

Temperature readout

NTD Ge thermistors

Room temperature electronics (CUORE style) or Cooled JFET (EDELWEISS)

Energy resolution

Array of **four** enriched detectors, **M** ~ **210** g (Ø=44mm-h=45 mm), **LSM** (EDELWEISS setup)

Light detector performance

Light detectors coupled to Li₂¹⁰⁰MoO₄ bolometers

- Electronic-grade pure Ge wafer (UMICORE)
- Diameter: 44 mm Thickness: 0.17 mm
- Equipped with NTD Ge thermistor (~ 5 9 mg)
- Exposed side coated with SiO layer (70 nm) to increase light absorption

Light	Condi-	Signal	FWHM _{Bsl}
detector	tions	μ V/keV	keV
1b-LD	optimal	1.3	0.08
	over bias	0.7	0.11
1t-LD	optimal over bias	2.4 1.2	0.07
2b-LD	optimal 1.5 over bias 1.1		0.11 0.12
2t-LD	optimal	1.1	0.09
	over bias	0.85	0.11

Satisfactory performance (~100 eV FWHM baseline) – Good reproducibility

α rejection

99.9% α rejection with > 99 % β acceptance (LY ~ 0.4-0.7 keV/MeV)

Investigation of ¹⁰⁰Mo $2\nu 2\beta$ decay

Energy (keV)

Investigation of ¹⁰⁰Mo 2 ν **2** β **:**

- Exposure: 28 kg×d
- Enrichment: 96.9% of ¹⁰⁰Mo
- ➢ eff_{PSD}: 97%
- Fit: 160-2650 keV \Rightarrow Effect = 24320±229 decays

 $T_{1/2} = [6.96 \pm 0.06] \times 10^{18} \text{ yr}$

One of the most precise ¹⁰⁰Mo half-life values

	es < /		
<i>T</i> _{1/2} [10 ¹⁸ yr]	Exposure	Experiment	Ref.
7.11±0.02(stat)±0.54(syst)	7.37 kg×yr	NEMO-3	PRL 95 (2005) 182302
7.15±0.37(stat)±0.66(syst)	0.08 kg×yr	LUCIFER	JPG 41 (2014) 075204
6.90±0.15(stat)±0.42(syst)	0.03 kg×yr	LUMINEU	arXiv:1704.01758
6.96±0.06(stat)±0.35(syst)	0.08 kg×yr	LUMINEU	Presented here

Investigation of ¹⁰⁰Mo $0\nu 2\beta$ decay

We performed $0v2\beta$ search joining the two runs involving enriched crystals at LSM

Possible origin of the background:

- 2615+583 keV from close Th contamination [²⁰⁸Tl peak 40x wrt Cuoricino]
- > Multiple high energy γ 's induced by muons [no coincidence study in our analysis]

Measures to mitigate the background

Remove known Th sources in the vicinity of the detectors

Connectors and cables belonging to the EDELWEISS setup

Substantial simplification of the cabling system

Activate coincidences among detectors and with the muon veto

> EDELWEISS data on γ 's above 2.6 MeV show a substantial contribution to background coming from events in coincidence

Goal: background reduction by one order of magnitude in the β band above 2.6 MeV \rightarrow b ~ 10⁻³ counts/(keV kg y)

Next pilot experiments

CUPID-Mo Phase I (20 crystals):

- > 20 ¹⁰⁰Mo-enriched (97%) Li₂MoO₄ presently in France
 - (\emptyset 44×45 mm, 0.21 kg each; 4.18 kg total)
 - \Rightarrow 2.34 kg of ¹⁰⁰Mo (1.37×10²⁵ ¹⁰⁰Mo nuclei)
- > 20 Ge light detectors (Ø44×0.175 mm)+SiO
- EDELWEISS set-up @ LSM (France)

START DATA TAKING: December 2017

CUPID-Mo Phase II (20+20 - or more - crystals):

- At least additional 20 Li₂¹⁰⁰MoO₄
- CUPID-0 set-up in hall A @ LNGS (Italy) (under discussion)

Tower structure in CUPID-Mo

Sensitivity of CUPID-Mo

The primary aim of CUPID-0/Mo is to demonstrate the maturity of the $Li_2^{100}MoO4$ technology in terms of crystal purity, bolometric performance, active methods for background rejection and reproducibility of all the relevant parameters. However, the physics reach of CUPID-Mo is quite interesting.

In calculating the sensitivity (90% C.L.), we will assume:

- > $b = 1 \times 10^{-3}$ counts/(keV kg y)
- > 8 keV energy window
- > 78% efficiency

Configuration	Half life limit [90% c.l.]	$\mathbf{M}_{\mathbf{\beta}\mathbf{\beta}}$ [meV]
(1) 20 crystal [20×0.5 cr.×y]	$1.4 imes 10^{24}$	240 - 670
(2) 20 crystal [20×1.5 cr.×y]	4.2×10^{24}	140 - 390
(3) 40 crystal [40×3 cr.×y]	$1.7 imes 10^{25}$	70 – 200

First two options sensitivities substantially unchanged by $b = 1 \times 10^{-2}$ counts/(keV kg y)

α/β separation without light detectors

We performed a specific study on a natural 150 g Li_2MoO_4 detector operated in LNGS. A calibration with an AmBe source provided enough statistics in the β and α -like bands

Possible configurations in CUPID

Single element	Number of elements	Isotope mass [kg]	Number of ¹⁰⁰ Mo nuclei	
Ø50×50 mm − 300 g	1260			
Ø60×40 mm − 350 g	1092	213	1.2×10 ²⁷	
45×45×55 mm – 340 g	1110			

If PSD works for α particle rejection (as preliminary results seem to demonstrate), a very simple configuration **without light detectors** can be envisaged.

If light detectors are kept, the available volume for the source will be reduced by $\sim 10\%$.

Background [counts/(keV kg y)]	Number of BKG counts [8 keV, 10 y]	Count limit [90% c.l.]	Half life limit [90% c.l.]	Μ _{ββ} [meV]
1 × 10 ⁻⁴	3	4.4	$1.4 imes10^{27}$	7.3 – 21
2 × 10 ⁻⁵	0.6	2.9	$2.2 imes 10^{27}$	5.9 – 17

Outline

 \succ CUPID: a next-generation $0v2\beta$ bolometric experiment

> The ¹⁰⁰Mo way: LUMINEU → CUPID-Mo

Surface sensitivity: the CROSS project

Current role of surface radioactivity

CUORE background model arXiv:1704.08970 [physics.ins-det] TeO2: natural radioactivity Surface radioactivity CuNOSV: natural radioactivity CuNOSV: cosmogenic activation CUORE TeO2: cosmogenic activation goal CuOFE: natural radioactivity RomanPb: natural radioactivity ModernPb: natural radioactivity SI: natural radioactivity 90%CL limit Rods and 300KFlan: natural radioactivity Value Environmental µ Environmental n Environmental y 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 counts/keV/kg/y

b

Eliminating surface α 's is enough?

The residual background after alpha rejection comes mainly from **high Q-value beta emitters from surface contamination** ²²⁶Ra – generates ²¹⁴Bi – 3.27 MeV endpoint ²²⁸Th – generates ²⁰⁸Tl – 5.00 MeV endpoint

Eliminating surface α 's is enough?

The residual background after alpha rejection comes mainly from **high Q-value beta emitters from surface contamination** ²²⁶Ra – generates ²¹⁴Bi – 3.27 MeV endpoint ²²⁸Th – generates ²⁰⁸Tl – 5.00 MeV endpoint

CROSS: new advancement opportunity

erc

ERC advanced grant CROSS

Cryogenic Rare-event Observatory with Surface Sensitivity

CROSS is a bolometric experiment to search for 0v-DBD

- Core of the project (high risk / high gain)
 Background rejection through pulse shape discrimination
 - Surface sensitivity through superconductive AI film coating
 - Fast NbSi high-impedance TES to replace / complement NTDs
 get rid of light detectors
- Complete crystallization of available ¹⁰⁰Mo (10 kg) in Li₂MoO₄ elements
- Purchase / crystallize ¹³⁰Te (up to 17 kg) in TeO₂ elements
- Run demonstrator in a dedicated cryostat (LSC Spain)

CUPID

Light yield

Light-yield plots with ²³²Th calibration

$2\nu\beta\beta$ decay random coincidences

Contribution to the background index in the ROI:

 \varnothing 50 mm \times 50 mm (300 g)

BKG(rc) [counts/(keV kg y)] = 3×10^{-4} [T_R / 1 ms] [M / 300 g]

Our approach (partial simulation + PSD)

- > Take a large value for T_R (typically $T_R \sim 3 \times rise$ time)
- Use real-shape pulses
- Use real noise baselines
- > Generate pulses with correct 2v pulse amplitude distribution
- Calculated rejection efficiency by PSD of pulse-pair separated by less than T_R
- Multiply the above formula by rejection efficiency

In a real case (heat channel):

 $T_R = 45 \text{ ms}$

Rejection efficiency by PSD = 99.3 % (using the so-called **mean-time method**) (95% acceptance)

BKG(rc) [counts/(keV kg y)] $\sim 1 \times 10^{-4}$

It can be improved:

- Full simulation
- Advanced pulse shape parameters (after optimum filtering)

EPJ C 72, 1989 (2012) EPJ C 74 , 2913 (2014) arXiv:1606.02287v1

Neutrons

Q = 4.78 MeV

⁶Li(n,t)α

 σ = 940 barn

(thermal neutrons)

Harmless

No associated β radiation Huge internal energy deposition

Harmless

Very low cross section Mixed events with α component

Choice of CROSS material (¹⁰⁰Mo – ¹³⁰Te)

Choice of CROSS material (130Te)

- Crystallization / purification chain for TeO₂ extensively studied in CUORE and precursors in natural crystals (SICCAS, Shanghai, China)
- Excellent results in terms of performance and radiopurity \Rightarrow Internal contamination in ²²⁶Ra and ²²⁸Th are less than 1 µBq/kg
- ➢ Recently, the study was extended to enriched crystals (USC et al., SICCAS)
 - Irrecoverable losses ~ 28 % (less good than ¹⁰⁰Mo but lower isotope price)
 - Detector performance of natural crystals si confirmed

	¹³⁰ TeO ₂ -2 [μBq/kg]	¹³⁰ TeO ₂ -1 [μBq/kg]	Nuclide	Chain
	<4.8 <3.1	<4.3 <2.3	²³² Th ²²⁸ Th	²³² Th
 Radiopurity is less natural crystals but b < 10⁻⁴ counts 	15.1 ± 4.4 <5 <3.8 <3.1 6076 ± 88	7.7 ± 2.7 <6.3 <5.7 <2.3 3795 ± 60	²³⁸ U ²³⁴ U ²³⁰ Th ²²⁶ Ra ²¹⁰ Po	²³⁸ U

PLB 767, 321 (2017)

Detector performance

Th calibration

Al films as pulse shape modifiers

Al films as pulse shape modifiers

Fast NbSi sensors

Double readout

If the NbSi signal contains an important component of **athermal phonons**, signalamplitude position dependence is possible with consequent **loss of energy resolution**

CROSS foresees in its baseline solution to keep NTD Ge readout (slow response, thermal signal)

CROSS demonstrator (CROSS-DEM)

- Complete crystallization of available ¹⁰⁰Mo (10 kg)
- Purchase / crystallize ¹³⁰Te (up to 17 kg)
- > Fabricate demonstrator with 90 crystals in dedicated refrigerator

Section of CROSS-DEM	Number of crystals	Total detector mass [kg]	Isotopic abundance	Total isotope mass [kg]	Number of candidate nuclides
CROSS-DEM-Te	30	22.8	93% (¹³⁰ Te)	17.0	7.9×10 ²⁵ (¹³⁰ Te)
CROSS-DEM-Mo	60	16.2	99% (¹⁰⁰ Mo)	9.14	5.4×10 ²⁵ (¹⁰⁰ Mo)

Low radioactivity refrigerator, based on a pulse tube, with experimental space \emptyset 30 x 60 cm – muon veto

To be installed in LSC (former ROSEBUD hut)

CROSS sensitivity

