DE LA RECHERCHE À L'INDUSTRIE

Luminescent bolometers for the study of double beta decay

Claudia Nones

CEA-IRFU

13th Rencontres du Vietnam

Neutrinos

Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO₂ bolometers

¹¹⁶CdWO₄ program in France

Study of ¹⁰⁰Mo in the AMoRE project

Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO₂ bolometers

¹¹⁶CdWO₄ program in France

Study of ¹⁰⁰Mo in the AMoRE project

Neutrinoless double beta decay ($0v2\beta$): standard and non-standard mechanisms

 $Ov2\beta$ is a test for « creation of leptons »: $2n \rightarrow 2p + 2e^- \Rightarrow LNV$

This test is implemented in the nuclear matter: $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Energetically possible for 35 nuclei Only a few are experimentally relevant

Standard mechanism: neutrino physics

7 $0v2\beta$ is mediated by light massive Majorana neutrinos (exactly those which oscillate)

0ν2β ⁴

Non-standard mechanism: BSM, LNV Not necessarily neutrino physics

What we are looking for ...

The shape of the two-electron sum-energy spectrum enables to distinguish between the O_V (new physics) and the 2_V decay modes

The signal is a peak (at the Q-value) over an almost flat background

Goal of next-generation searches

Request for the background index

Background index b [counts/(keV kg y)]

number of background counts

detector (isotope) mass X live time X energy interval

around the Region of Interest

In the source=detector approach with high energy resolution technique (ΔE_{FWHM} < 10 keV) zero background at the tonne scale means

 $b \leq 10^{-4}$ [counts/(keV kg y)]

Present record: GERDA (⁷⁶Ge) < b ~ 7 x 10⁻⁴ counts/(keV kg y) - ΔE_{FWHM} ~ 3 keV

• Talk of Ann-Kathrin Schuetz

Silver and golden isotopes

¹³⁰Te is almost golden: Q-value (2527 keV) in a clean window between 2615 keV γ peak and its Compton edge (2382 keV) ⁸

Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO₂ bolometers

¹¹⁶CdWO₄ program in France

Study of ¹⁰⁰Mo in the AMoRE project

Bolometers: ideal detectors for $0v2\beta$

Bolometric approach: the source is embedded in a crystal, which is cooled down to 10-20 mK and works as a perfect calorimeter

 $\Delta T = E/C$

Talk of

Brian Fujikawa

Attractive features of bolometers for $0v2\beta$ decay

- High energy resolution (~ down to 4 keV FWHM in the ROI)
- $ightarrow \sim 0.1-0.5$ kg source in each crystal \rightarrow large masses achievable through arrays
- > Crystals can achieve very high radiopurity
- > High efficiency (~ 80 90 %)
- > Experience: Cuoricino/CUORE experiments \rightarrow crystals of TeO₂ (isotope ¹³⁰Te)
- Large flexibility in the detector material choice: ¹³⁰Te, and three golden isotopes (⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd) can be studied ₁₀

Are pure bolometers enough to fully explore the IH region?

NO !!

CUORE will not be a zero-background search (~50 counts/y expected in the ROI)

Residual surface α background

Lessons learned from TeO₂ bolometric experiments (CUORE and predecessors)

Irreducible background due to **alpha particles**, emitted at the **surfaces** and energy-degraded

 $b \sim 10^{-2}$ [counts/(keV kg y)]

Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO₂ bolometers

¹¹⁶CdWO₄ program in France

Study of ¹⁰⁰Mo in the AMoRE project

Luminescent bolometers: the solution! Scintillation **Cherenkov** light 4 Simultaneous detection **Bolometric technique** of heat and light (CUORE, EDELWEISS...) (CRESST) Choice of the candidate: Full α/β separation Golden or almost golden isotope "zero" gamma background "zero" alpha background

= zero background at the \approx 1 ton x year scale

- First proposal (scintillation): L. Gonzalez-Mestres and D. Perret Gallix (1988)
- > First demonstration (in the $0v2\beta$ context): E. Fiorini's group (Milano) in 1992
- First optical bolometer: N. Coron's group (IAS, Orsay) in 1995
- > Extensive application in Dark Matter for electron/nuclear recoil separation (CRESST)
- First proposal (Cherenkov): T. Tabarelli de Fatis (2010)

Double bolometer for heat and light

The most convenient method to realize a light detector at low temperatures is the development of an **auxiliary bolometer**, made with a thin absorber opaque to the light emitted by the **main bolometer**, and facing one polished side of it.

Luminescent bolometer <

 α 's emit a different amount of light with respect to β/γ of the same energy Separation can be achieved also with pulse shape discrimination in the light signal (ex. ZnSe)

A scatter plot light vs. heat or plot lightyield vs. heat separates α 's from β 's / γ 's

Example of a luminescent bolometer with bolometric light detector

Extensive bolometric test of $0v2\beta$ candidates

Nucleus	I. A. [%]	Q-value [keV]	Materials successfully tested as bolometers in crystalline form (underlined compounds: scintillators)
⁷⁶ Ge	7.8	2039	Ge
¹³⁶ Xe	8.9	2479	NONE
¹³⁰ Te	33.8	2527	TeO ₂ Cherenkov + scintiliation
116 Cd	7.5	2802	$CdWO_4$, $CdMoO_4$
⁸² Se	9.2	2995	ZnSe, LiInSe ₂
¹⁰⁰ Mo	9.6	3034	PbMoO ₄ , CaMoO ₄ , SrMoO ₄ , CdMoO ₄ , SrMoO ₄
			$ZnMoO_4$, Li_2MoO_4 , $MgMoO_4$
⁹⁶ Zr	2.8	3350	ZrO ₂
¹⁵⁰ Nd	5.6	3367	NONE \rightarrow many attempts
⁴⁸ Ca	0.187	4270	<u>CaF</u> ₂ , <u>CaMoO</u> ₄

Most of the compounds have been studied also as luminescent bolometers

- > Pioneering work of S. Pirro and his group at LNGS
- > LUCIFER group
- > LUMINEU group
- > AMoRE group

Luminescent bolometers are excellent candidates

for the technology of CUPID,

proposed follow-up of the CUORE experiment 17

Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO₂ bolometers

¹¹⁶CdWO₄ program in France

Study of ¹⁰⁰Mo in the AMoRE project

Current scenario

Current scenario

Current scenario

Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO_2 bolometers

¹¹⁶CdWO₄ program in France

Study of ¹⁰⁰Mo in the AMoRE project

The case of ¹³⁰Te

Cherenkov light emission induced by $\gamma(\beta)$ interactions in TeO₂ is expected *T. Tabarelli, Eur. Phys. J. C* 65 (2010) 359

Cherenkov thresholds: $E_e > 50 \text{ keV}$ $E_\alpha > 400 \text{ MeV}$

holds: @ ¹³⁰Te Q_{$\beta\beta$} (~2.5 MeV) ~ 220 Cherenkov photons (300-900 nm) \rightarrow ~**600 eV** No Cherenkov photons from natural α radioactivity

In real life, for TeO₂ CUORE-size crystals (5x5x5 cm³), collected light corresponds to a total energy of ~100 eV

Discrimination Power (DP) (to quantify α/β separation) \rightarrow *L*

$$DP = rac{|\mu_{\beta/\gamma} - \mu_{\alpha}|}{\sqrt{\sigma_{\beta/\gamma}^2 + \sigma_{\alpha}^2}}$$

Vibrant R&D activities	(variegate technologies)
------------------------	--------------------------

Crystal	LD sensor	LD RMS [eV]	DP
TeO ₂ , 6 g	NTD Ge	n.a.	4.70 Phys. Rev. C 94 (2016) 054608
TeO ₂ , 23 g	TES IrAu	8	3.59 J. Instrum. 10 (2015) P03003
TeO ₂ , 117 g	NTD Ge*	97	1.37 Astropart. Phys. 35 (2012) 558
TeO ₂ , 285 g	TES W*	23	3.69 Astropart. Phys. 69 (2015) 30
TeO ₂ , 750 g	NTD Ge	19	2.70 J. Low Temp. Phys. 184 (2016) 286
¹³⁰ TeO ₂ , 435 g	NTD Ge	35	2.65 Phys. Lott. P. 767 (2017) 221 220
¹³⁰ TeO ₂ , 435 g	NTD Ge	25	3.50 Frys. Lett. B / 6/ (2017) 321-329

Neganov-Luke effect + NTD Ge thermistor readout

Goal : get full event-by-event α/β separation with the same read-out as in CUORE and the same crystal size presently adopted in CUORE

The absorption of photons produces *electron-hole pairs*

The electric field drifts the charges and it prevents their recombination

Carriers collide with the lattice during the drift, increasing the temperature

$$E = E_0 \cdot \left(1 + \frac{q \cdot V}{\varepsilon}\right)$$

q electron charge V voltage applied ε energy used to produce an electron-hole pair

Light detector fabrication

Development of Neganov-Luke light detectors at CSNSM using EDELWEISS electrode technology \rightarrow Dedicated evaporators for Al and SiO films

Test with a CUORE-size crystal at Modane underground laboratory

GeCo1 has also been tested coupled to a natural TeO₂ crystal (784 g) at a working temperature of 17 mK

This test has been performed in Laboratoire Souterrain de Modane (LSM, France)

EDELWEISS set-up

Separated heat/light calibrations

Heat channel - ²³²Th calibration

Light channel - X-ray fluorescence calibration (Zero bias on Neganov-Luke electrodes)

Detector holder internally coated with silver

Neganov-Luke voltage = 0 V

Neganov-Luke voltage = 0 V

Neganov-Luke voltage = 60 V (optimum performance)

Neganov-Luke voltage = 0 V

60 V

Neganov-Luke voltage = 60 V (optimum performance)

7

10 eV

The best result ever obtained with a CUORE-size TeO2 crystal

Not only Cherenkov light...

Averaging many GeCo1 events @60 V grids bias, RUN 311 LSM Amplitude [AU] 3551 Amplitude [AU] samples events to reduce the α events @ 2.6 MeV events @ 5.3 MeV baseline noise... 333 events @ 2.6 MeV -samples 0.8 613 Scintillation light of samples 0.6 αs emitted by 210Po -0.05 0.4 Time [s] 0.2 If we consider a quenching factor of 0.2 for α-induced light, the ~20% of light is due to 0.5 0.1 0.2 0.3 0.4 the scintillation Time [s]

GeCo1 events @60 V grids bias, RUN 311 LSM

First hint of TeO₂ scintillation: *Nucl. Instrum. Meth. A 520(1-3) (2004) 159–162* (N. Coron's group (IAS, Orsay)) ³²

Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO₂ bolometers

¹¹⁶CdWO₄ program in France

Study of ¹⁰⁰Mo in the AMoRE project

The case of ¹¹⁶Cd

\succ ¹¹⁶Cd \rightarrow ¹¹⁶Sn + 2e⁻

- ≻ Q_{bb} = 2814 keV
- I.A.(100) = 7.5 %
- enrichable by gas centrifugation
- CdWO₄ crystals routinely produced on an industrial basis

Caveats ¹¹³Cd

- > Enrichment cost at least a factor 2 higher than ¹⁰⁰Mo, ⁸²Se, ¹³⁰Te
- ²¹⁴Bi line at 3054 keV B.R. 0.021 % Compton edge 2818 keV

Historical results on CdWO₄ scintillating bolometers

Tests performed in LNGS

3x3x3 cm CdWO₄

3x3x6 cm CdWO₄

Historical results on CdWO₄ scintillating bolometers

First results on an enriched ¹¹⁶CdWO₄ scintillating bolometer

Above ground test (CSNSM) of a 32 g enriched CdWO_4 detector

Very good energy resolution: 7.5 keV FWHM Excellent a/β separation

Double crystallization by low-thermal gradient Czochralski technique \rightarrow excellent radiopurity

Eur. Phys. J. C 76, 487 (2016) 37

Pilot experiment with ¹¹⁶CdWO₄ scintillating bolometers

CYGNUS project

- > Use existing radiopure ¹¹⁶CdWO₄ enriched crystals (ITEP Moscow, KINR Kiev)
- > Total mass 1.16 kg
- > Array of two or four elements to be installed in LSM (together with CUPID-Mo)

From the total background budget (Monte Carlo simulation of the EDELWEISS set-up):

> $b = 2.4 \times 10^{-3}$ counts/(keV kg y)

dominated by cosmogenic ^{110m}Ag

3 y data taking: $T_{1/2}$ > 8.2×10²³ yr at 90% C.L. The half-life limit corresponds to the effective neutrino mass limit $m_{\beta\beta}$ < 0.6 - 0.9 eV

Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO₂ bolometers

¹¹⁶CdWO₄ program in France

Study of ¹⁰⁰Mo in the AMoRE project

The case of ¹⁰⁰Mo

Caveats ¹⁰⁰Mo

- > $T_{1/2}(2v) = 7.1 \times 10^{18} \text{ y}$ the fastest one in all $0v2\beta$ candidates
- ²¹⁴Bi line at 3054 keV B.R. 0.021 % Compton edge 2818 keV (less critical than for ¹¹⁶Cd)

Useful Mo-based crystals

Crystals succesfully tested so far as scintillating bolometers:

CdMoO₄ PbMoO₄ SrMoO₄ ZnMoO₄ Li₂MoO₄

```
LUMINEU - CUPID-Mo
Initial choice (2012): ZnMoO<sub>4</sub>
First tests on large Li<sub>2</sub>MoO<sub>4</sub> crystals: spring 2014
Choice in favour of Li<sub>2</sub>MoO<sub>4</sub>
```

AMoRE

Advanced Mo-based Rare process Experiment

Drawbacks of CaMoO₄:
Necessity of ⁴⁸Ca depletion
Radiopurity (difficult to purify Ca from U, Th, Ra)
New crystals will be studied

AMoRE-phased approach

AMoRE pilot 1.8 kg now

AMoRE-I 5 kg 2018

AMoRE-II 200 kg 2020

From Yong-Hamb Kim's talk Shanghai double beta decay workshop - June 2017

42

AMoRE-phased approach

- MMC technology for heat and light measurement
- Crystal: ⁴⁰Ca¹⁰⁰MoO₄, doubly enriched scintillating crystals (Pilot & I)

For Phase II: X¹⁰⁰MoO₄ (X: Li, Na, ⁴⁰Ca, Zn or Pb)

- Zero background condition in ROI
- Shield: Lead (Pilot, I), Water (II)
- Location: Y2L (Pilot, I) and a new deeper place (ARF at Handuk)

	Pilot	Phase I	Phase II
Mass	1.8 kg	~5 kg	~200 kg
MMC Channel	12	28-36	1000
Required background (ckky)	0.01	0.001	0.0001
Sensitivity($T_{1/2}$) (year)	~10 ²⁴	~10 ²⁵	~5×10 ²⁶
Sensitivity (m_{ee}) (meV)	380-720	120-230	17-32
Location	Y2L	Y2L	ARF
Schedule	2017	2018-2019	2020-2022

From Yong-Hamb Kim's talk Shanghai double beta decay workshop - June 2017

AMoRE-single module

$^{40}Ca^{100}MoO_4 + MMC$

From Yong-Hamb Kim's talk Shanghai double beta decay workshop - June 2017

AMoRE-particle discrimination

Phonon pulse shape discrimination (PSD)

From Yong-Hamb Kim's talk Shanghai double beta decay workshop - June 2017

Conclusions

> α background is presently the limiting factor in bolometers for $0v2\beta$

- > Luminescent bolometers have the potential to fully reject α events
- Luminescent bolometers are a mature technology: pilot experiments
 □ CUPID-0 (ZnSe) → presently in data taking
 □ CUPID-Mo (Li₂MoO₄) → data taking in 2018
 □ AMoRE-I (CaMoO₄ + XMoO₄) → data taking in 2018
- > Encouraging R&D results on $^{116}CdWO_4$ and TeO₂
- Large-scale projects are envisaged: CUPID and AMoRE-II

Mechanism of surface α background

Bolometers are fully sensitive, up to the detector surface \rightarrow **no dead layer**

Shallow (up to 10 μ m deep) surface contamination (for example ²¹⁰Po) of the bolometers themselves or of the materials surrounding them emit alpha particles

Challenging events.

They release in the detector only a part of the α energy and populate also the region above 2615 keV with a continuum