Luminescent bolometers for the study of double beta decay

Claudia Nones
CEA-IRFU
Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO$_2$ bolometers

116CdWO$_4$ program in France

Study of 100Mo in the AMoRE project
Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO₂ bolometers

¹¹⁶CdWO₄ program in France

Study of ¹⁰⁰Mo in the AMoRE project
Neutrinoless double beta decay ($0\nu 2\beta$): standard and non-standard mechanisms

$0\nu 2\beta$ is a test for «creation of leptons»: $2n \rightarrow 2p + 2e^- \Rightarrow \text{LNV}$

This test is implemented in the nuclear matter: $(A,Z) \rightarrow (A,Z+2) + 2e^-$

Energetically possible for 35 nuclei
Only a few are experimentally relevant

Standard mechanism: **neutrino physics**
- $0\nu 2\beta$ is mediated by **light massive Majorana neutrinos** (exactly those which oscillate)

Non-standard mechanism: **BSM, LNV**
Not necessarily neutrino physics
The shape of the two-electron sum-energy spectrum enables to distinguish between the 0ν (new physics) and the 2ν decay modes

\[Q \approx 2 - 3 \text{ MeV} \] for the most promising candidates

The signal is a peak (at the Q-value) over an almost flat background
Goal of next-generation searches

\[\langle M_{0\beta\beta} \rangle \text{ [eV]} \]

\[M_{\text{lightest}} \text{ [eV]} \]

\[T_{1/2} \sim 10^{27-28} \text{ y} \]

\[g_A = 1.269 \text{ (no quenching)} \]

\[O(1 \text{ ton}) + \sim \text{zero background} \]
Request for the background index

Background index

\[b \ [\text{counts/(keV kg y)}] \]

number of background counts

detector (isotope) mass \times live time \times energy interval

around the Region of Interest

In the source=detector approach

with high energy resolution technique (\[\Delta E_{\text{FWHM}} < 10 \text{ keV} \])

zero background at the tonne scale means

\[b \lesssim 10^{-4} \ [\text{counts/(keV kg y)}] \]

Present record: GERDA (\(^{76}\text{Ge}\)) <

\[b \sim 7 \times 10^{-4} \text{ counts/(keV kg y)} - \Delta E_{\text{FWHM}} \sim 3 \text{ keV} \]

Talk of Ann-Kathrin Schuetz
Silver and golden isotopes

Golden isotopes:
- ^{48}Ca – ^{150}Nd – ^{96}Zr – ^{100}Mo – ^{82}Se – ^{116}Cd

Silver isotopes:
- ^{76}Ge – ^{130}Te – ^{136}Xe

Q-value [MeV]

Natural γ radioactivity limit

$^{208}\text{TI} \gamma$

130Te is almost golden: Q-value (2527 keV) in a clean window between 2615 keV γ peak and its Compton edge (2382 keV)

$G(Q,Z) \propto Q^5$

Background

Large-scale enrichment is possible

Magnificent Nine candidates

Phase space: $G(Q,Z) \propto Q^5$

$^{208}\text{Tl} \gamma$

2.6 MeV $^{208}\text{Tl} \gamma$
Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO$_2$ bolometers

116CdWO$_4$ program in France

Study of 100Mo in the AMoRE project
Bolometers: ideal detectors for $0^\nu 2\beta$

Bolometric approach: the source is embedded in a crystal, which is cooled down to 10-20 mK and works as a perfect calorimeter

\[\Delta T = \frac{E}{C} \]

Attractive features of bolometers for $0^\nu 2\beta$ decay

- High energy resolution (~ down to 4 keV FWHM in the ROI)
- ~ 0.1-0.5 kg source in each crystal → large masses achievable through arrays
- Crystals can achieve very high radiopurity
- High efficiency (~ 80 – 90 %)
- Experience: Cuoricino/CUORE experiments → crystals of TeO$_2$ (isotope 130Te)
- Large flexibility in the detector material choice: 130Te, and three golden isotopes (82Se, 100Mo, 116Cd) can be studied
Are pure bolometers enough to fully explore the IH region?

NO !!

CUORE will not be a zero-background search (~50 counts/y expected in the ROI)

WHY ??
Residual surface α background

Lessons learned from TeO$_2$ bolometric experiments (CUORE and predecessors)

Irreducible background due to alpha particles, emitted at the surfaces and energy-degraded

$b \sim 10^{-2} \text{ [counts/(keV kg y)]}$
Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO$_2$ bolometers

116CdWO$_4$ program in France

Study of 100Mo in the AMoRE project
Luminescent bolometers: the solution!

Bolometric technique (CUORE, EDELWEISS…) + Simultaneous detection of heat and light (CRESST)

Choice of the candidate: Golden or almost golden isotope
“zero” gamma background

Full α/β separation
“zero” alpha background

= zero background at the ≈ 1 ton x year scale

- First demonstration (in the 0ν2β context): E. Fiorini’s group (Milano) in 1992
- First optical bolometer: N. Coron’s group (IAS, Orsay) in 1995
- Extensive application in Dark Matter for electron/nuclear recoil separation (CRESST)
- First proposal (Cherenkov): T. Tabarelli de Fatis (2010)
The most convenient method to realize a light detector at low temperatures is the development of an auxiliary bolometer, made with a thin absorber opaque to the light emitted by the main bolometer, and facing one polished side of it.

Luminescent bolometer <

Actual light and heat signals acquired with a \(\text{CdWO}_4 \) scintillating bolometer

\[2615 \text{ keV } \gamma \text{-ray} \]
α / β separation

α's emit a different amount of light with respect to β/γ of the same energy. Separation can be achieved also with pulse shape discrimination in the light signal (ex. ZnSe).

A scatter plot light vs. heat or plot light-yield vs. heat separates α's from β’s / γ’s.

Example of a luminescent bolometer with bolometric light detector.

ZnSe only!
Extensive bolometric test of $0\nu 2\beta$ candidates

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>I. A. [%]</th>
<th>Q-value [keV]</th>
<th>Materials successfully tested as bolometers in crystalline form (underlined compounds: scintillators)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{76}Ge</td>
<td>7.8</td>
<td>2039</td>
<td>Ge</td>
</tr>
<tr>
<td>^{136}Xe</td>
<td>8.9</td>
<td>2479</td>
<td>TeO_2, CdWO_4, CdMoO_4, ZnSe, LiInSe_2, PbMoO_4, CaMoO_4, SrMoO_4, CdMoO_4, SrMoO_4, ZnMoO_4, Li_2MoO_4, MgMoO_4</td>
</tr>
<tr>
<td>^{130}Te</td>
<td>33.8</td>
<td>2527</td>
<td>TeO_2 is a very weak scintillator</td>
</tr>
<tr>
<td>^{116}Cd</td>
<td>7.5</td>
<td>2802</td>
<td>CdWO_4, CdMoO_4, ZnSe, LiInSe_2, PbMoO_4, CaMoO_4, SrMoO_4, CdMoO_4, SrMoO_4, ZnMoO_4, Li_2MoO_4, MgMoO_4</td>
</tr>
<tr>
<td>^{62}Se</td>
<td>9.2</td>
<td>2995</td>
<td>ZnMoO_4, Li_2MoO_4, MgMoO_4, CaF_2, CaMoO_4</td>
</tr>
<tr>
<td>^{100}Mo</td>
<td>9.6</td>
<td>3034</td>
<td>ZrO_2, CaF_2, CaMoO_4</td>
</tr>
<tr>
<td>^{96}Zr</td>
<td>2.8</td>
<td>3350</td>
<td>NONE \rightarrow many attempts</td>
</tr>
<tr>
<td>^{150}Nd</td>
<td>5.6</td>
<td>3367</td>
<td>NONE \rightarrow many attempts</td>
</tr>
<tr>
<td>^{48}Ca</td>
<td>0.187</td>
<td>4270</td>
<td>NONE \rightarrow many attempts</td>
</tr>
</tbody>
</table>

Most of the compounds have been studied also as **luminescent bolometers**

- Pioneering work of S. Pirro and his group at LNGS
- LUCIFER group
- LUMINEU group
- AMoRE group

Luminescent bolometers are excellent candidates for the technology of **CUPID**, proposed follow-up of the CUORE experiment.
Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO$_2$ bolometers

116CdWO$_4$ program in France

Study of 100Mo in the AMoRE project
Current scenario

- **Detection of Cherenkov light**
 - Light detector technology
 - TES-based
 - NTD-Ge-thermistor based
 - MKIDs based
 - Neganov-Luke-effect assisted

- **Tests with natural crystals** (Milano/LNGS group)
- **First enriched crystal test** (CSNSM-IRFU)

- **Increasing Q-value**
 - **^{130}Te**
 - LUCIFER program
 - **^{116}Cd**
 - CUPID-O experiment
 - **^{82}Se**
 - AMoRE experiment
 - LUMINEU / LUCIFER
 - CUPID-Mo experiment
 - **^{100}Mo**
Current scenario

Detection of Cherenkov light
Light detector technology
- TES-based
- NTD-Ge-thermistor based
- MKIDs based
- Neganov-Luke-effect assisted

Increasing Q-value

130Te

116Cd

82Se

100Mo

Covered in this conference

Talk of Laura Cardani

Tests with natural crystals (Milano/LNGS group)
First enriched crystal test (CSNSM-IRFU)

LUCIFER program
CUPID-0 experiment
AMoRE experiment
LUMINEU / LUCIFER
CUPID-Mo experiment

Talk of Nicola Casali
Talk of Andrea Giuliani
Current scenario

- Detection of Cherenkov light
 - Light detector technology
 - TES-based
 - NTD-Ge-thermistor based
 - MKIDs based
 - Neganov-Luke-effect assisted

- Tests with natural crystals (Milano/LNGS group)
- First enriched crystal test (CSNSM-IRFU)

- LUCIFER program
 - CUPID-0 experiment
 - AMoRE experiment
 - LUMINEU / LUCIFER
 - CUPID-Mo experiment

Covered in this conference
- Talk of Laura Cardani
- Talk of Nicola Casali
- Talk of Andrea Giuliani

Increasing Q-value
Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO$_2$ bolometers

116CdWO$_4$ program in France

Study of 100Mo in the AMoRE project
The case of 130Te

Cherenkov light emission induced by $\gamma(\beta)$ interactions in TeO$_2$ is expected

Cherenkov thresholds:

<table>
<thead>
<tr>
<th>$E_e > 50$ keV</th>
<th>$E_\alpha > 400$ MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>130Te $Q_{\beta\beta}$ (\sim2.5 MeV)</td>
<td>~220 Cherenkov photons (300-900 nm) \rightarrow ~600 eV</td>
</tr>
<tr>
<td>No Cherenkov photons from natural α radioactivity</td>
<td></td>
</tr>
</tbody>
</table>

In real life, for TeO$_2$ CUORE-size crystals (5x5x5 cm3), collected light corresponds to a total energy of \sim100 eV

Discrimination Power (DP) (to quantify α/β separation)

$$DP = \frac{|\mu_{\beta/\gamma} - \mu_\alpha|}{\sqrt{\sigma_{\beta/\gamma}^2 + \sigma_\alpha^2}}$$

Vibrant R&D activities (variegate technologies)

<table>
<thead>
<tr>
<th>Crystal</th>
<th>LD sensor</th>
<th>LD RMS [eV]</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TeO$_2$, 6 g</td>
<td>NTD Ge</td>
<td>n.a.</td>
<td>4.70</td>
</tr>
<tr>
<td>TeO$_2$, 23 g</td>
<td>TES IrAu</td>
<td>8</td>
<td>3.59</td>
</tr>
<tr>
<td>TeO$_2$, 117 g</td>
<td>NTD Ge*</td>
<td>97</td>
<td>1.37</td>
</tr>
<tr>
<td>TeO$_2$, 285 g</td>
<td>TES W*</td>
<td>23</td>
<td>3.69</td>
</tr>
<tr>
<td>TeO$_2$, 750 g</td>
<td>NTD Ge</td>
<td>19</td>
<td>2.70</td>
</tr>
<tr>
<td>130TeO$_2$, 435 g</td>
<td>NTD Ge</td>
<td>35</td>
<td>2.65</td>
</tr>
<tr>
<td>130TeO$_2$, 435 g</td>
<td>NTD Ge</td>
<td>25</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Phys. Rev. C 94 (2016) 054608
J. Instrum. 10 (2015) P03003
Astropart. Phys. 35 (2012) 558
Astropart. Phys. 69 (2015) 30
J. Low Temp. Phys. 184 (2016) 286
Neganov-Luke effect + NTD Ge thermistor readout

Goal: get full event-by-event α/β separation with the same read-out as in CUORE and the same crystal size presently adopted in CUORE

\[E = E_0 \cdot \left(1 + \frac{q \cdot V}{\varepsilon}\right) \]

q: electron charge
V: voltage applied
ε: energy used to produce an electron-hole pair
Development of Neganov-Luke light detectors at CSNSM using EDELWEISS electrode technology → Dedicated evaporators for Al and SiO films
Test with a CUORE-size crystal at Modane underground laboratory

GeCo1 has also been tested coupled to a natural TeO₂ crystal (784 g) at a working temperature of 17 mK

This test has been performed in Laboratoire Souterrain de Modane (LSM, France)

EDELWEISS set-up
Separated heat/light calibrations

Heat channel - 232Th calibration

Light channel - X-ray fluorescence calibration
(Zero bias on Neganov-Luke electrodes)

Detector holder internally coated with silver
α/β separation

Neganov-Luke voltage = 0 V

Preliminary
\[\alpha/\beta \text{ separation} \]

Neganov-Luke voltage = 0 V

Neganov-Luke voltage = 60 V (optimum performance)

DP = 3.17
2440-2790 keV

Preliminary
\[\alpha/\beta \text{ separation} \]

Neganov-Luke voltage = 0 V

\[
\begin{array}{c|c|c}
\text{Grids bias} & \text{Baseline RMS} & \text{Signal/Noise} \\
0 V & 108 \text{ eV} & 0.6 \\
60 V & 10 \text{ eV} & 7 \\
\end{array}
\]

Neganov-Luke voltage = 60 V (optimum performance)

\[\text{DP} = 3.17 \]

2440-2790 keV

\((210^{\text{Po}})\)
The best result ever obtained with a CUORE-size TeO$_2$ crystal

96.3% $0\nu\beta\beta$ signal acceptance with 99.9% α rejection

LSM results (preliminary, unpublished)

$J.\text{ Low Temp. Phys. 184 (2016) 286}$

(Obtained in LNGS hall C with a similar Neganov-Luke CSNSM detector)
Not only Cherenkov light...

First hint of TeO$_2$ scintillation: *Nucl. Instrum. Meth. A* **520**(1-3) (**2004**) 159-162
(N. Coron’s group (IAS, Orsay))
Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO$_2$ bolometers

116CdWO$_4$ program in France

Study of 100Mo in the AMoRE project
The case of 116Cd

- 116Cd \rightarrow 116Sn + 2e$^-$
- $Q_{bb} = 2814$ keV
- I.A.(100) = 7.5 %
- enrichable by gas centrifugation
- 116Cd \rightarrow 116Sn + 2e$^-$
- $Q_{bb} = 2814$ keV
- I.A.(100) = 7.5 %
- enrichable by gas centrifugation
- 116Cd \rightarrow 116Sn + 2e$^-$
- $Q_{bb} = 2814$ keV
- I.A.(100) = 7.5 %
- enrichable by gas centrifugation

Caveats 113Cd

- Enrichment cost at least a factor 2 higher than 100Mo, 82Se, 130Te
- 214Bi line at 3054 keV - B.R. 0.021 % - Compton edge 2818 keV
Historical results on CdWO$_4$ scintillating bolometers

Tests performed in LNGS

Astropart. Phys. 34 (2010) 143
Historical results on CdWO_4 scintillating bolometers

2615 keV $^{208}\text{Tl} \gamma$

44 days background

High internal contamination
First results on an enriched $^{116}\text{CdWO}_4$ scintillating bolometer

Aboveground test (CSNSM) of a 32 g enriched CdWO$_4$ detector

Very good energy resolution: 7.5 keV FWHM
Excellent α/β separation

Double crystallization by low-thermal gradient Czochralski technique \rightarrow excellent radiopurity

Very promising

Pilot experiment with $^{116}\text{CdWO}_4$ scintillating bolometers

CYGNUS project
- Use existing radiopure $^{116}\text{CdWO}_4$ enriched crystals (ITEP Moscow, KINR Kiev)
- Total mass 1.16 kg
- Array of two or four elements to be installed in LSM (together with CUPID-Mo)

From the total background budget (Monte Carlo simulation of the EDELWEISS set-up):

$$b = 2.4 \times 10^{-3} \text{ counts/(keV kg y)}$$

dominated by cosmogenic ^{110m}Ag

3 y data taking: $T_{1/2} > 8.2 \times 10^{23}$ yr at 90% C.L. The half-life limit corresponds to the effective neutrino mass limit $m_{\beta\beta} < 0.6 - 0.9$ eV
Outline

Neutrinoless double beta decay: experimental challenges

Merits and limits of the pure bolometric technique

Advantages offered by luminescent bolometers

Present scenario of luminescent bolometers for double beta decay

Detection of Cherenkov light in TeO$_2$ bolometers

116CdWO$_4$ program in France

Study of 100Mo in the AMoRE project
The case of 100Mo

- 100Mo \rightarrow 100Ru + 2e$^-$
- $Q_{bb} = 3034$ keV
- I.A.(100) = 9.7 %
- Enrichable by gas centrifugation

Caveats 100Mo

- $T_{1/2}(2\nu) = 7.1 \times 10^{18}$ γ - the fastest one in all $0\nu2\beta$ candidates

- 214Bi line at 3054 keV - B.R. 0.021 % - Compton edge 2818 keV (less critical than for 116Cd)
Useful Mo-based crystals

Crystals successfully tested so far as scintillating bolometers:

- CdMoO$_4$
- PbMoO$_4$
- SrMoO$_4$
- ZnMoO$_4$
- Li$_2$MoO$_4$
- CaMoO$_4$

LUMINEU - CUPID-Mo
- Initial choice (2012): ZnMoO$_4$
- First tests on large Li$_2$MoO$_4$ crystals: spring 2014
- Choice in favour of Li$_2$MoO$_4$

AMoRE
- Advanced Mo-based Rare process Experiment

Drawbacks of CaMoO$_4$:
- Necessity of 48Ca depletion
- Radiopurity (difficult to purify Ca from U, Th, Ra)

New crystals will be studied
AMoRE-phased approach

AMoRE pilot
1.8 kg
now

AMoRE-I
5 kg
2018

AMoRE-II
200 kg
2020

From Yong-Hamb Kim’s talk
Shanghai double beta decay workshop – June 2017
AMoRE-phased approach

- MMC technology for heat and light measurement
- Crystal: $^{40}\text{Ca}^{100}\text{MoO}_4$, doubly enriched scintillating crystals (Pilot & I)

 For Phase II: $X^{100}\text{MoO}_4$ (X: Li, Na, ^{40}Ca, Zn or Pb)

- Zero background condition in ROI
- Shield: Lead (Pilot, I), Water (II)
- Location: Y2L (Pilot, I) and a new deeper place (ARF at Handuk)

<table>
<thead>
<tr>
<th></th>
<th>Pilot</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>1.8 kg</td>
<td>~5 kg</td>
<td>~200 kg</td>
</tr>
<tr>
<td>MMC Channel</td>
<td>12</td>
<td>28-36</td>
<td>1000</td>
</tr>
<tr>
<td>Required background (ckky)</td>
<td>0.01</td>
<td>0.001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Sensitivity($T_{1/2}$) (year)</td>
<td>$\sim 10^{24}$</td>
<td>$\sim 10^{25}$</td>
<td>$\sim 5 \times 10^{26}$</td>
</tr>
<tr>
<td>Sensitivity(m_{ee}) (meV)</td>
<td>380-720</td>
<td>120-230</td>
<td>17-32</td>
</tr>
<tr>
<td>Location</td>
<td>Y2L</td>
<td>Y2L</td>
<td>ARF</td>
</tr>
</tbody>
</table>

From Yong-Hamb Kim’s talk
Shanghai double beta decay workshop – June 2017
AMoRE-single module

\[^{40}\text{Ca}^{100}\text{MoO}_4 + \text{MMC} \]

Phonon-Scintillation detection at mK

Sensor technology

Metallic Magnetic Calorimeter

SQUID readout

From Yong-Hamb Kim’s talk

Shanghai double beta decay workshop – June 2017
AMoRE-particle discrimination

Particle discrimination by light heat ratio

4 MeV < E_{ae} < 7 MeV

Phonon pulse shape discrimination (PSD)

From Yong-Hamb Kim's talk
Shanghai double beta decay workshop - June 2017
Conclusions

- α background is presently the limiting factor in bolometers for $0\nu2\beta$
- Luminescent bolometers have the potential to fully reject α events
- Luminescent bolometers are a mature technology: pilot experiments
 - CUPID-0 (ZnSe) \(\rightarrow\) presently in data taking
 - CUPID-Mo (Li$_2$MoO$_4$) \(\rightarrow\) data taking in 2018
 - AMoRE-I (CaMoO$_4 + X$MoO$_4$) \(\rightarrow\) data taking in 2018
- Encouraging R&D results on 116CdWO$_4$ and TeO$_2$
- Large-scale projects are envisaged: CUPID and AMoRE-II
Mechanism of surface α background

Bolometers are fully sensitive, up to the detector surface → no dead layer

Shallow (up to 10 μm deep) surface contamination (for example 210Po) of the bolometers themselves or of the materials surrounding them emit alpha particles

Challenging events:
They release in the detector only a part of the α energy and populate also the region above 2615 keV with a continuum