

The CUORE experiment at LNGS

Brian Fujikawa (Lawrence Berkeley National Lab) 16-22 July 2017 Rencontres du Vietnam Neutrinos

https://cuore.lngs.infn.it/

Cryogenic Underground Observatory for Rare Events

Outline

- Neutrinoless Double Beta Decay
- CUORE Experiment
 - Bolometric detectors
 - Construction
 Background mitigation
 - Status
- CUORE-0
 - $0\nu\beta\beta$ & $2\nu\beta\beta$ Analysis
 - Projected CUORE performance
- Beyond CUORE: CUPID

Double Beta Decay

$$(A, Z-2) \rightarrow (A, Z) + 2e^- + 2\overline{\nu}_e$$

$$A, Z-2) \to (A, Z) + 2e^{-1}$$

<u>Two Neutrino Double Beta Decay</u> (2vββ)

- Rare, but allowed by the Standard Model
- Has been experimentally observed in several isotopes
- $T_{1/2}^{2\nu} \ge 10^{18} \text{ y}$

<u>Neutrinoless Double Beta Decay</u> (0vββ)

If observed, then:

- Establish $\Delta L = 2$ Lepton Number Violation
- Establish the Majorana nature of the neutrino (Schechter & Valle "Black Box")
- Determination of the absolute neutrino mass scale
- Possible determination of the neutrino mass hierarchy

Neutrinoless Double Beta Decay (0vββ)

Neutrinoless Double Beta Decay (0vββ)

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2$$

 $U_{\alpha i},\,\Delta m_{ij}$ from measurements of:

- Solar neutrinos
- Reactor neutrinos
- Atmospheric neutrinos
- Long Baseline Accelerator neutrinos

Effective Majorana Mass of the Neutrino

$$m_{\beta\beta} = |\sum_{i} U_{ei}^2 m_i|$$

Sensitivity to $m_{\beta\beta} \sim 100 \,{\rm meV}$ requires sensitivity to $T_{1/2}^{0\nu}\gtrsim 10^{26} \,{\rm years}$

 m_e^2

Neutrinoless Double Beta Decay F.O.M.

$$T_{1/2}^{0\nu}(\text{FOM}) \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{b \cdot \delta E}}$$

- a: isotopic abundance
- ε: detection efficiency
- M: source mass
- t: exposure time
- b: ROI background rate
- δE : ROI energy resolution

Goal: sensitivity to $T_{1/2}^{0\nu}\gtrsim 10^{26}\,{\rm years}$

Cryogenic Underground Observatory for Rare Events

Cryogenic Underground Observatory for Rare Events

Timeline of TeO₂ Bolometric Detectors

CUORE is the latest in the series

Bolometric Detectors

• Typical TeO₂ Δ T ~ 0.1 mK/MeV

Time [s]

3.5

3

Brian Fujikawa (LBNL)

Rencontres du Vietnam Neutrinos (16-22 July 2017)

1800

1600^L

0.5

1.5

2.5

2

Bolometric Detector Performance

$$T_{1/2}^{0\nu}(\text{FOM}) \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{b(\delta E)}}$$

Advantage: excellent energy resolution

	Technology	ROI δΕ/Q _{ββ} (FWHM)
GERDA	Ge Diode	0.13 to 0.30%
CUORE-0	TeO ₂ Bolometer	0.20%
EXO-200	Liquid Xe TPC	3.6%
KamLAND-Zen	¹³⁶ Xe loaded liquid scintillator	10 to 11%

Mod. Phys. Lett. A 31, 1630017 (2016)

Isotope Choice: ¹³⁰Te

¹³⁰**Te**:

 $Q_{\beta\beta} = 2528 \text{ keV}$ a(natural) = 34.2%

- High natural abundance
- Enrichment is not necessary for the current generation of 0vββ searches

The CUORE Detector

- 19 towers
- 52 TeO₂ bolometers per tower
- 988 TeO₂ bolometers
- 742 kg TeO₂ mass
- ¹³⁰Te mass: 206 kg
- near "ton-scale" experiment
- highly segmented

Backgrounds from Cosmic Rays

CUORE goal: $b \le 10^{-2}$ counts/keV/kg/year

Cosmic Rays:

- Direct interactions
- Spallation products
- Activation

 $T_{1/2}^{0\nu}(\text{FOM}) \propto a \cdot \epsilon \cdot \gamma$

LNGS Average depth: ~3600 m.w.e. Muon Flux at LNGS: ~3x10⁻⁸ μ /(s cm²) (factor ~ x10⁶ reduction from the surface)

Brian Fujikawa (LBNL)

Backgrounds from Natural Radioactivity

background mitigation:

- external shielding:
 - archeological & modern Pb
 - polythylene & boron-loaded
- start with clean parts
- contamination prevention:
 - underground storage in flowing N2
 - class 1000 clean room
 - glove box with flowing N2
 - final assembly in low Rn air

- neutrons
- high energy γ-rays n-capture ²⁰⁸TI, ²¹⁴Bi, etc.

degraded a's

energy loss can put events in 0vßß ROI

Clean Detector Components

Ultra-pure TeO2 crystal array

Bulk activity 90% C.L. upper limits: 8.4×10⁻⁷ Bq/kg (²³²Th), 6.7×10⁻⁷ Bq/kg (²³⁸U), 3.3×10⁻⁶ Bq/kg (²¹⁰Po) Surface activity 90% C.L. upper limits: 1.9×10⁻⁹ Bg/cm² (²³²Th), 8.9×10⁻⁹ Bg/cm² (²³⁸U), 9.8×10⁻⁷ Bg/cm² (²¹⁰Po)

(arXiv:1704.08970)

- Crystal holder design optimized to reduce passive surfaces • (Cu) facing the crystals
- Developed ultra-cleaning process for all Cu components:
 - Tumbling
 - Electropolishing
 - Chemical etching
 - Magnetron plasma etching

Т3

- Benchmarked in dedicated bolometer run at LNGS •
 - Residual ²³²Th / ²³⁸U surface contamination of Cu: < 7×10⁻⁸ Bg/cm²
- All parts stored underground, under nitrogen after cleaning •

Tower Assembly

Class 1000 Clean Room for Detector Assembly and Storage

- All parts cleaned/screened according to CUORE protocol
- Stored underground at LNGS
- Assembly in underground clean room

CUORE Gluing Line

 $M \cdot t$ Important for $T_{1/2}^{0\nu}(\text{FOM}) \propto a \cdot \epsilon \cdot \sqrt{1/2}$ δE energy resolution

Robotic Arm

Position Sensors

Print Glue Matrix

Glued Crystals

Inspection

Quality Control

Mechanical Assembly

Parts are stored in nitrogen flushed boxes

And, transfered in vacuum boxes to nitrogen flushed glove boxes...

Brian Fujikawa (LBNL)

Mechanical Assembly

...where the towers are assembled.

Wire Bonding

Brian Fujikawa (LBNL)

19 (+1) Towers Assembled

Tower Installation

Brian Fujikawa (LBNL)

CUORE is cold and running!

Diode thermometer at 10mK plate

Reached 8 mK: 26 Jan 2017

Current status of CUORE:

- •End of commissioning and beginning of data-taking: April 2017
- •Blind analysis currently in progress
- Expect first results within the next few months

Brian Fujikawa (LBNL)

CUORE-0

A total of 19 + 1 CUORE towers were assembled CUORE-0 is the "0th" tower

CUORE Hut

Cuoricino Hut

- CUORE-0 tower running in Cuoricino cryostat
- Base temperature (10 mK) achieved in Mar 2013

CUORE-0

- Uses the old Cuoricino cryostat
- Electronics from Cuoricino
- Shielding from Cuoricino
 - Inner lateral shield of Roman lead (1cm)
 - Inner top/bottom cap of Roman lead (20 cm)
 - Outer shield:
 - low-activity modern lead (10 cm)
 - regular modern lead (10 cm)
 - Borated PET neutron shield
 - Enclosed in Faraday cage and flushed with N2 for radon suppression
- Cooled to base T (~10 mK) March 2013
- Ran through March 2015

DAQ continuously samples the NTD thermistor voltage at 125 Hz

1. Software trigger identifies waveforms

2. Data quality inspection

- 3. Apply optimal filter
- 4. Apply thermal gain stabilization
- 5. Energy calibration
- 6. Apply blinding
- 7. $0\nu\beta\beta$ candidate event selection
 - 1. Reject pileup events
 - 2. Apply pulse shape cut
 - 3. Apply anti-coincidence cut
- 8. Unblind the data

Baseline RMS vs Time Dataset 2109 Channel 8

DAQ continuously samples the NTD thermistor voltage at 125 Hz

- 1. Software trigger identifies waveforms
- 2. Data quality inspection

3. Apply optimal filter

- 4. Apply thermal gain stabilization
- 5. Energy calibration
- 6. Apply blinding
- 7. $0\nu\beta\beta$ candidate event selection
 - 1. Reject pileup events
 - 2. Apply pulse shape cut
 - 3. Apply anti-coincidence cut
- 8. Unblind the data

DAQ continuously samples the NTD thermistor voltage at 125 Hz

- 1. Software trigger identifies waveforms
- 2. Data quality inspection
- 3. Apply optimal filter
- 4. Apply thermal gain stabilization
- 5. Energy calibration

6. Apply blinding

- 7. $0\nu\beta\beta$ candidate event selection
 - 1. Reject pileup events
 - 2. Apply pulse shape cut
 - 3. Apply anti-coincidence cut
- 8. Unblind the data

CUORE-0 Illustration of Data Salting

DAQ continuously samples the NTD thermistor voltage at 125 Hz

- 1. Software trigger identifies waveforms
- 2. Data quality inspection
- 3. Apply optimal filter
- 4. Apply thermal gain stabilization
- 5. Energy calibration
- 6. Apply blinding
- 7. $0\nu\beta\beta$ candidate event selection

1. Reject pileup events

- 2. Apply pulse shape cut
- 3. Apply anti-coincidence cut
- 8. Unblind the data

DAQ continuously samples the NTD thermistor voltage at 125 Hz

- 1. Software trigger identifies waveforms
- 2. Data quality inspection
- 3. Apply optimal filter
- 4. Apply thermal gain stabilization
- 5. Energy calibration
- 6. Apply blinding
- 7. $0\nu\beta\beta$ candidate event selection
 - 1. Reject pileup events
 - 2. Apply pulse shape cut

3. Apply anti-coincidence cut

8. Unblind the data

 ${\sim}88\%$ of $0\nu\beta\beta$ decays confined to single bolometer

Continuum background from multi-Compton scatters and degraded alphas are mostly multisite events

CUORE-0 0vββ ROI (unblinded)

Simultaneous un-binned extended ML fit to range [2470,2570] keV Fit function has 3 components:

- 1. Calibration-derived line shape modeling posited fixed at 2527.5 keV
- 2. Calibration-derived line shape modeling ⁶⁰Co sum-peak floated around 2505 keV
- 3. Continuum background

CUORE-0 0vββ Results

Phys. Rev. Lett. **115**, 102502 (2015) Phys. Rev. C **93**, 045503 (2016)

Brian Fujikawa (LBNL)

CUORE-0 Energy Resolution at ²⁰⁸TI 2615 keV

Achieved the 5 keV resolution goal of CUORE

Brian Fujikawa (LBNL)

CUORE-0 2vββ Analysis

$$T_{1/2}^{2\nu} = [8.2 \pm 0.2(\text{stat}) \pm 0.6(\text{syst})] \times 10^{20} \text{ years}$$

$$T_{1/2}^{2\nu} = [7.0 \pm 0.9(\text{stat}) \pm 1.1(\text{syst})] \times 10^{20} \text{ years}$$
 (NEMO-3)

Eur. Phys. J. C 77 13 (2017)

• Material assay

Projected CUORE Backgrounds

- "Radio-assay" by CUORE-0 from 2vββ analysis
- Material assay
- Geant4-based CUORE MC

 $b = [1.02 \pm 0.03(\text{stat})^{+0.23}_{-0.10}(\text{syst})] \times 10^{-2} \text{ counts/keV/kg/year}$

arXiv:1705.10816

Beyond CUORE: CUPID

CUPID: CUORE Upgrade with Particle ID

- Goal: sensitivity to the full IH region $T_{1/2}^{0\nu} \sim 10^{27} 10^{28} \, {\rm years}$
- Requires:
 - ≥1 ton of ββ isotope
 - CUORE-like energy resolution

 $\delta E/Q_{\beta\beta} \sim 0.2\% (\text{FWHM})$

Background index

 $b \lesssim 10^{-1} \operatorname{counts}/(\operatorname{keV} \cdot \operatorname{ton} \cdot \operatorname{year})$

• $\geq \times 10^3$ reduction relative to CUORE

The CUPID Interest Group: arXiv:1504.03599 & arXiv:1504.03612

CUPID R&D

R&D Towards CUPID

Please see the related talks at this conference:

Wednesday 19 July 2017:

•Laura Cardani (morning session) Innovative light detectors for background rejection in CUORE and CUPID

Thursday 20 July 2017:

- Claudia Nones (09:30, next talk) Scintillating bolometers for the study of double beta decay
- Nicola Casali (10:00) *CUPID-O Cryogenic calorimeter with particle ID for double beta decay*
- Andrea Giuliani (11:00)

A 100Mo pilot experiment with scintillating bolometers (CUPID activities)

The CUORE Collaboration

Brian Fujikawa (LBNL)