Innovative light detectors for background rejection in CUORE and CUPID

L. Cardani Istituto Nazionale di Fisica Nucleare - Roma for the CALDER collaboration

Rencontres du Vietnam July 19 2017, ICISE, Qui Nhon

Calorimeters for 0nDBD

CUORE

sets the standard for next generation experiments exploiting calorimeters:

- Hundreds of kg of source I Proved
- Good Energy Resolution I ~0.1% for CUORE-like detectors
- Goal: background of o(100) events in the ROI $->T_{1/2}(\beta\beta)\sim10^{26}$ y

B.Fujikawa: "The CUORE experiment at LNGS", 20th July https://cuore.Ings.infn.it

CUPID

CUPID: Cuore Upgrade with Particle IDentification arXiv:1504.03612, arXiv:1504.03599

Goal: increase sensitivity on 0nDBD from $9x10^{25}$ y to $>10^{27}$ y

- O Calorimeters: energy resolution 0.1% ⇔ ideal also for CUPID
- O But reduce **background** from *o*(100) events in the ROI ⇔ <u>~0 in CUPID!</u>

CUPID

CUPID: Cuore Upgrade with Particle IDentification

arXiv:1504.03612, arXiv:1504.03599

Goal: increase sensitivity on 0nDBD from $9x10^{25}$ y to $>10^{27}$ y

CUORE cryostat \Rightarrow useful also for CUPID (ultimate limit in mass)

Calorimeters: energy resolution 0.1% c> ideal also for CUPID

But reduce background from o(100) events in the ROI a -0 in CUPID!

Particle Identification in TeO₂

Couple a light detector to TeO₂ to measure the Cherenkov light emitted by e- (not by a's)

CUORE TeO₂ : low light output (~100 eV at $0\nu\beta\beta$ from Cherenkov emission)

Using a "standard" LD with noise of 80 eV RMS does not permit particle ID

A LD with noise RMS < 20 eV would allow to reject the dominant background (α)

Particle Identification: alternative

Use compounds that, in contrast to TeO₂, emit scintillation light at 10 mK

Suggested talks (all the 20th):

- C. Nones: "Scintillating bolometers for the study of double beta decay"
- N. Casali: "CUPID-0 cryogenic calorimeters with particle ID for double beta decay"
- A. Giuliani: "A 100Mo pilot experiment with scintillating bolometers (CUPID activities)

Particle Identification in TeO₂

Requirements for a light detector suitable for CUPID:

- Baseline resolution <20 eV RMS
- Large active area (5x5 cm²)
- High radio-purity
- Ease in fabrication/operation (~1000 channels)
 - Reproducible behavior in a rather wide temperature range (5-20 mK)
 - Low heat load for cryogenic system

Particle Identification in TeO₂

Requirements for a light detector suitable for CUPID:

- Baseline resolution <20 eV RMS
- Large active area (5x5 cm²)
- High radio-purity
- Ease in fabrication/operation (~1000 channels)
 - Reproducible behavior in a rather wide temperature range (5-20 mK)
 - Low heat load for cryogenic system

L.Pattavina et al., Journal of Low Temp Phys 1-6 (2015) M. Biassoni et al., Eur.Phys.J. C75 (2015) 10, 480 K.Schaeffner et. al, Astropart.Phys. 69 (2015) 30-36 M. Willers et al., JINST 10 P03003 (2015) L.Gironi et al. Phys. Rev. C 94, 054608 (2016) D.R. Artusa et al Phys Lett B 2017 (2017) ...and many others

But none of the existing technologies fulfills **all** these requirements (yet)

We propose a new technology

Kinetic Inductance Detectors

- Superconductors operated in AC Day et al., Nature 425 (2003) 817.
- Cooper Pairs acquire kinetic inductance L
- It act as a resonator
- Photons break Cooper pairs -> change L -> change resonance

Kinetic Inductance Detectors

Requirements for a light detector suitable for CUPID:

- ✓ Baseline resolution <20 eV RMS</p>
 - Large active area (5x5 cm²)
- High radio-purity
- **Ease** in fabrication/operation (~1000 channels)
 - Reproducible behavior in a rather wide temperature range (5-20 mK)
 - Low heat load for cryogenic system

Kinetic Inductance Detectors

Requirements for a light detector suitable for CUPID:

✓ Baseline resolution <20 eV RMS</p>

• Large active area (5x5 cm²)

High radio-purity

Ease in fabrication/operation (~1000 channels)

Reproducible behavior in a rather wide temperature range (5-20 mK)

1.4 mm

Low heat load for cryogenic system

Phonon mediated approach

- 1) Optimize detector geometry, read-out and analysis using Aluminum $\rightarrow 80 \text{ eV}$
- 2) Move to more sensitive superconductors (TiAl, TiN..) and increase surface \rightarrow <20 eV
- 3) Large-scale test of our light detectors on TeO₂ array at LNGS (Italy)

E.S Battistelli et. al, Eur.Phys.J. C75 (2015) 8, 353

Phase1

AI KIDs on 2x2 cm² Si substrate (goal: 5x5 cm²)

First test (with 4 KIDs): 150 eV RMS (goal: 80 eV)

Appl.Phys.Lett. 107 (2015) 093508

Optimize the design of the resonator and our analysis tools to improve the RMS

Analysis Optimization

Two energy estimators: phase/amplitude

Usually phase has better signal-to-noise ratio

We developed tools to combine them accounting for noise correlations

Frequency and width -> 2 informations

KIDs are characterized by dual-readout

Phase1

AI KIDs on 2x2 cm² Si substrate (goal: 5x5 cm²)

First test (with 4 KIDs): 150 eV RMS (goal: 80 eV)

Appl.Phys.Lett. 107 (2015) 093508

Optimize the design of the resonator and our analysis tools to improve the RMS

Resolution constant up to 200 mK

Appl. Phys. Lett. 110, 033504 (2017)

Phonon mediated approach

- 1) Optimize detector geometry, read-out and analysis using Aluminum $\rightarrow 80 \text{ eV}$
- 2) Move to more sensitive superconductors (TiAl, TiN..) and increase surface $\rightarrow \langle 20 \text{ eV} \rangle$
- 3) Large-scale test of our light detectors on TeO₂ array at LNGS (Italy)

E.S Battistelli et. al, Eur.Phys.J. C75 (2015) 8, 353

Phase2: new materials

Al does not allow to achieve the necessary sensitivity \rightarrow other superconductors

	AI	Ti-Al Al-Ti-Al	Ti+TiN
Tc [K]	1.2	0.6 - 0.9	0.5 - 0.8
L [pH/square]	0.5	1	6
producer	INF-CNR	CSNSM- Néel, CNRS	FBK
status	completed	this result	in production

First tests on Ti-AI and AI-Ti-AI prototypes

Phase2: new materials Preliminary

Again a 2x2 cm² Si substrate sampled by KIDs made of different materials Goal: from 80 eV to <20 eV

Conclusion

Development of sensitive cryogenic LD is fundamental for CUPID

Phonon-mediated KIDs is a viable technology

CALDER Phase-I reached 80 eV with Aluminum KIDs, now in Phase-II (20 eV) with more sensitive superconductors

Preliminary tests already hit 30 eV

http://www.roma1.infn.it/exp/calder

Dark Matter Searches with KIDs LD

Most of cryogenic calorimeters suffer from the lack of active background rejection

Solution: measure not only energy but also light

Good discrimination power >1 MeV, spoiled at low E because of LD resolution ~80 eV RMS

Not a problem for 0vββ, but a better LD (**RMS < 20eV**) would provide particle ID also at low energy (below 30 keV) —> dark matter searches "for free"

KIDs Read-Out

Sitting in the center of the resonance loop, we can monitor variations in I and Q (or, changing coordinates, in amplitude/phase) produced by interactions

Since phase is more sensitive, we use this estimator to reconstruct the pulse energy

KIDs efficiency

We tested different detector configurations: Al on a 2x2 cm², 300 μ m thick Si substrate:

Test with LED [400 nm] + optical fiber, but also with ⁵⁵Fe/⁵⁷Co X-rays (calibration systematics)

We varied thickness (t) and active area (A), as we expect ε to scale as (tA)

- 1. Single pixel t: 25 nm, A: 2.4 mm² $\rightarrow \epsilon \sim 2\%$
- 2. Single pixel t: 40 nm, A: 2.4 mm² $\rightarrow \epsilon \sim 7\%$
- 3. Single pixel t: 40 nm, A: 4.0 mm² $\rightarrow \epsilon \sim 11\%$

The efficiency is position dependent, but we can correct this effect exploiting pulses time development

Resolution

If we are dominated by the amplifier noise (ideal case), we expect the resolution to scale as:

In the 4-pixel configuration, we measured samples with noise from 150 eV to 90 eV. We changed V, α , Q and ϵ of the single KID. The resolution changed from 160 to 90 eV.

Target of phase-I (80 eV) within reach

Low frequency noise, probably ascribable to electronics, always present in our KIDs.

It limits the energy resolution, that could better also with Al films.

Now under investigation.