


Search for  
Charged Lepton  
Flavour Violation (CLFV)
Yoshitaka Kuno

Department of Physics, 

Osaka University, Japan


July 18, 2017

Renconstres de Vietnam - Neutrino

ICISE, Quy Nhon, Vietnam



Outline



Outline

• Physics motivation of charged lepton favour violation 
(CLFV)


• Muon CLFV experiments

• Muon to electron conversion

• Mu2e

• COMET

• COMET Phase-I


• Summary



Why CLFV?



Neutrinos and Charged Leptons

2.1 Neutrino masses and mixings: oscillation phenomena 25

in 1956 [71, 72]. Its existence having also been hypothesised to account for missing momentum in
cosmic ray pion decays, the muon neutrino would in turn be discovered 1964 [73]. The discovery
of the τ lepton put forward the existence of a third family of neutral fermions - and hence the
ντ , which would be identified in 2000 [74]. The so-far observed neutral fermions, νe, νµ and ντ ,
are weak-interaction eigenstates, forming SU(2)L doublets with the corresponding charged leptons
- the “active” neutrinos. The existence of additional neutral, weakly interacting light fermions is
severy constrained by the determination of the Z boson width at LEP [75], disfavouring further
“active” neutrinos with mass m < MZ/2.

Neutrino oscillations, in particular, ν − ν̄ oscillations, were first postulated by Pontecorvo in
1957 [23,24] (in analogy with K0 − K̄0 oscillations); the possibility of mixing between the electron
and the muon neutrinos was put forward by Maki, Nakagawa and Sakata [25]. Such a phenomenon
reflects the fact that there is a misalignement between the leptonic weak interaction basis and the
physical (mass) basis. A given neutrino flavour eigenstate, produced by charged current interac-
tions, corresponds to a coherent superposition of non-degenerate mass eigenstates. The observation
of an oscillation between two flavours would then irrevocably signal that (at least) one state would
be massive, at the same time corresponding to the violation of neutral lepton flavour.

2.1.1 Oscillation formalism

The first experimental evidence of oscillation between different flavours of neutrinos, i.e., the ex-
istence of a misalignement between the weak interaction eigenstates and the physical basis, arose
as early as 1968 (deficit in the solar neutrino flux [15, 76] with respect to standard solar model
predictions [16]). Confirmation of “atmospheric neutrino oscillations” was provided by the Super-
Kamiokande (SK) experiment in 1998 [26], while in 2002 the Sudbury Neutrino Observatory (SNO)
would provide spectacular confirmation of “solar neutrino oscillations” [77, 78]. The past decade
has seen a number of experimental milestones in neutrino oscillation experiments, the most recent
the determination of the so-called “Chooz angle” (parametrising the contribution of the heaviest
mass eigenstate to the electron-flavoured neutrino), by the Daya Bay [79], RENO [80] and Double
Chooz [81] collaborations.

Although necessarily interpreted in terms of a complete three-active flavour framework, the
results of neutrino oscillation experiments are often displayed in a two-flavour oscillation context;
the actual values of the parameters are such that to a very good approximation, the complete
oscillation formulae conveying the conversion of flavour α to flavour β (α,β = e, µ, τ) in a three
mass eigenstate scenario (i, j = 1...3), can be reduced to a simpler two generation case, as for
example

νe = ν1 cos θ12 + ν2 sin θ12
νµ = −ν1 sin θ12 + ν1 cos θ12

⇒ P (νe → νµ) = sin2 2θ12
∆m2

12L

4E
, (2.1)

with L the length travelled between the creation of an electron neutrino (e.g. in solar reactions)
with energy E, and its detection via the production of a muon in charged currect interaction, and in
which ∆m2

12 is positive by definition. Each experimental setup mainly determines a single mixing
angle and squared mass difference.

The current ensemble of experimental data appears to favour a three-neutrino oscillation frame-
work, with at least two massive states. Just as what occurs for the quark sector, the misalignement
between the physical and the weak interaction basis leads to the violation of lepton flavour in
charged current interactions,

Lℓ
cc ∼ −

g√
2
U † ij
PMNSW

+
µ ν̄Li γ

µ eLj , UPMNS = Rℓ
LRν†

L , (2.2)

26 Phenomenological aspects of massive neutrinos

with Rℓ
L and Rν

L the unitary matrices that diagonalise the charged lepton and the (symmetric)
neutrino mass matrices, respectively, in analogy to Eq. (1.3). The “Pontecorvo-Maki-Nakagawa-
Sakata” matrix, UPMNS [25] reflects the misalignment between the leptonic interaction and physical
basis. Working for simplicity (and without loss of generality) in the weak basis where the charged
lepton Yukawa couplings are diagonal (i.e. Rℓ

L = 1), one then has

νℓ = UPMNS νi , i.e.

⎛

⎝
νe
νµ
ντ

⎞

⎠ =

⎛

⎝
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

⎞

⎠

⎛

⎝
ν1
ν2
ν3

⎞

⎠ . (2.3)

Should all leptons be Dirac particles then, as occurred with the VCKM, redefinitions of the fields
allow to parametrise the UPMNS in terms of 3 real (mixing) angles and a phase, θij and δ; if neutrinos
are Majorana fermions (more precisely, if there is a Majorana mass term involving the neutral states
- see discussion below), then some phases cannot be fully re-absorbed by redefinitions of the fields
(as they would re-emerge in the Majorana mass term), and two additional phases become physical.
The latter are called “Majorana phases”, α and β. The UPMNS can then be parametrised as

UPMNS =

⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎠ . diag(1, eiα, eiβ) , (2.4)

with cij , sij respectively denoting cos θij and sin θij . Also in analogy with the quark sector, a
convention- and basis-independent measure of the amount of CP violation in the lepton sector can
be obtained using the leptonic Jarlskog invariant [82, 83] defined as

Im
[
UαiU

∗
αjU

∗
βiUβj

]
≡

∑

γ=e,µ,τ

∑

k=1,2,3

JCP ϵαβγ ϵijk ≡ Jmax
CP sin δCP ; (2.5)

using the parametrisation in Eq. (2.4), its maximal value is

Jmax
CP = cos θ12 sin θ12 cos θ23 sin θ23 cos

2 θ13 sin θ13 . (2.6)

The probability of transition (conversion) in vacuum2 between two flavours (να → νβ) is given by

P (να → νβ) = δαβ − 4
∑

i>k

Re
[
U∗
αiUβiUαkU

∗
βk

]
sin2

(
∆m2

ki L

4E

)

+ 2
∑

i>k

Im
[
U∗
αiUβiUαkU

∗
βk

]
sin2

(
∆m2

ki L

4E

)
, (2.7)

where Uℓj denotes the ℓj element of the UPMNS; in the above, ∆m2
ki = m2

i − m2
k (oscillation

experiments being only sensitive to squared mass differences and not to the individual absolute
masses), and as before E is the neutrino energy and L the distance between the source and the
detector (where a weak eigenstate νℓ is produced/detected via charged current interactions). The
last term in Eq. (2.7) - which can be easily recast in terms of the leptonic Jarlskog invariant of
Eq. (2.5) - describes CP violation in neutrino oscillations, generated by the Dirac CP phase δ
(see the standard parametrisation of Eq. (2.4)). Numerous channels (apperance, disapperance)

2Neutrino propagation in matter is substantially different from that in vacuum; the so-called “Mikheev-Smirnov-
Wolfenstein” (MSW) effect [84] is particularly relevant in solar neutrino physics. We will not pursue the discussion
of the MSW effect in this manuscript, but refer to [69] for a more detailed discussion and list of references.

�
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be said of cLFV: any manifestation would imply that the SM must be non-trivially extended; in
other words, observable cLFV implies the presence of truly new degrees of freedom.

The most minimal extension of the SM allowing to accommodate neutrino oscillation data
consists in the addition of right-handed neutrinos, which in analogy to all other massive fermions,
combine with the left-handed states, thus giving rise to massive Dirac neutral fermions. In the
framework of the SMνR , individual lepton numbers are violated - this being encoded in the UPMNS

matrix, and transitions such as µ→ eγ can indeed occur, being mediated by W bosons and massive
neutrinos (and weighed by the PMNS matrix elements, Uij), as depicted by the Feynman diagram
of Fig. 3.1.

W−

γ

ℓi ℓj

νLUik U∗
jk

Figure 3.1: Feynman diagram schematically representing cLFV radiative lepton decays in the SM
with massive neutrinos.

Despite being allowed, the predicted rate [288] for such a transition is

BR(µ→ eγ) =
3α

32π

∣∣∣∣∣
Uej U

∗
µj

m2
νj

M2
W

∣∣∣∣∣

2

≃ O(10−55) , (3.1)

where best-fit values for neutrino data were used. Clearly, such a tiny value lies beyond the reach
of any future experiment; the observation of such a cLFV signal would then imply that Nature
should be described by a more ambitious extension than the SMνR : New Physics degrees of freedom
must be involved to have BR(µ→ eγ) within experimental reach. Similar values (extremely small)
are also found for observables such as the three-body muon decay µ → eee, neutrinoless muon
conversion, or tau-sector observables.

It is important to stress the strong difference with respect to NP contributions to quark flavour
observables (as for example the closely resembling b→ sγ transition): whilst in the quark sector new
contributions are strongly constrained by the comparison of experimental data to the SM predictions
(and are typically called upon to alleviate possible tensions between theory and experiment), in the
lepton sector there is in essence no SM contribution! Any confirmed observation is necessarily an
indisputable signal of NP, and despite its possibly small value, it cannot be interpreted or explained
in terms of SM theoretical uncertainties.

An important point is nevertheless crucial to stress: while neutrino oscillations necessarily imply
that lepton flavour is violated (at least in the neutral lepton sector), the observation of a charged
lepton flavour violation signal is not necessarily associated with neutrino oscillation phenomena; in
other words, cLFV can emerge as an independent process, without any connection to the mechanism
of neutrino mass generation. This is the case of several models which will be discussed in Chapter 4,
such as Two-Higgs-Doublet models, or the general MSSM, in which flavour violating vertices of the
type ℓiℓjφnew exist (φnew denoting a new particle), and neutrinos are massless. This re-inforces the
remarkable potential of an observation of cLFV as a New Physics signal.

SM Contribution to CLFV
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Effective Lagrangian with New Physics

Λ is the energy scale of new 
physics（～ｍNP） 
CNP is the coupling constant.

dimension 6

42 CHAPTER 3. PHYSICS OF FLAVOUR AND SYMMETRIES

Table 3.1: Sensitivity of the sources of flavour symmetry breaking accessible at low energy in the
quark sector (from meson-antimeson mixing processes), given in Eq. (3.3). The observables in-
clude oscillation frequencies (�m) and CP-violating parameters for the di↵erent systems. Taken
from Ref. [1]; note that limits from the Bs have since been further tightened.

Operator Limits on ⇤ (TeV) Limits on CNP Observables
(CNP = 1) (⇤ = 1TeV)

Re Im Re Im
(sL�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK , "K

(sRdL)(sLdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK , "K

(cL�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD, |q/p|, �D

(cRuL)(cLuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD, |q/p|, �D

(bL�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mBd , S�KS

(bRdL)(bLdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mBd , S�KS

(bL�µsL)2 1.4⇥ 102 2.5⇥ 102 5.0⇥ 10�5 1.7⇥ 10�5 �mBs , S �
(bRsL)(bLsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs , S �

hand, this success may be embarrassing since it could exclude possible large contributions
of new physics at the TeV scale. For instance, new physics may be included as

Le↵ = LSM +
CNP

⇤2
O(6)

ij , (3.3)

where the second term represents the new physics contribution and CNP and ⇤ are
the coupling constant and the energy scale of new physics respectively, and O(6)

ij is a
dimension-six operator. For example, from the measurements of �mK , �mD, �mBd ,
�mBs , CP violating parameters for K, D, Bd and Bs, the energy scale of new physics
⇤ ⇠ O(103) TeV in the case of CNP = 1 is assumed, or CNP is very small, of the order
of O(10�5) to O(10�11) if ⇤ = 1 TeV is assumed (see Table 3.1).

For the charged lepton sector, the constraint from flavour-changing processes (charged
lepton flavour violation) is even more severe. For instance, for µ+ ! e+�, one can con-
sider

CNP

⇤2
O(6)

ij !
Cµe

⇤2
eL�⇢⌫µR�F⇢⌫ . (3.4)

The present upper limit of B(µ! e�) < 2.4⇥ 10�12 gives

⇤ > 2⇥ 105 TeV ⇥ (Cµe)
1
2 . (3.5)

In the case of Cµe = 1, ⇤ can be O(105) TeV.
The good overall consistency of the quark flavour-changing processes and the strin-

gent limits of lepton flavour-changing processes indicates that there is not much room
for new sources of flavour symmetry breaking close to the TeV scale, or the scale of
new physics is very high. However, this is based on a very general argument. In some
specific theoretical models the constraints of new physics should be determined in a
model-dependent way, and sometimes the constraints could be less stringent.

In such theoretical models, we do expect small but detectable deviations from the
SM predictions, in selected special flavour-changing processes. They are the flavour-
changing processes with suppressed SM contributions, or the SM-forbidden processes
with no SM contribution.
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Table 3.1: Sensitivity of the sources of flavour symmetry breaking accessible at low energy in the
quark sector (from meson-antimeson mixing processes), given in Eq. (3.3). The observables in-
clude oscillation frequencies (�m) and CP-violating parameters for the di↵erent systems. Taken
from Ref. [1]; note that limits from the Bs have since been further tightened.

Operator Limits on ⇤ (TeV) Limits on CNP Observables
(CNP = 1) (⇤ = 1TeV)

Re Im Re Im
(sL�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK , "K

(sRdL)(sLdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK , "K

(cL�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD, |q/p|, �D

(cRuL)(cLuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD, |q/p|, �D

(bL�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mBd , S�KS

(bRdL)(bLdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mBd , S�KS

(bL�µsL)2 1.4⇥ 102 2.5⇥ 102 5.0⇥ 10�5 1.7⇥ 10�5 �mBs , S �
(bRsL)(bLsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs , S �

hand, this success may be embarrassing since it could exclude possible large contributions
of new physics at the TeV scale. For instance, new physics may be included as

Le↵ = LSM +
CNP

⇤2
O(6)

ij , (3.3)

where the second term represents the new physics contribution and CNP and ⇤ are
the coupling constant and the energy scale of new physics respectively, and O(6)

ij is a
dimension-six operator. For example, from the measurements of �mK , �mD, �mBd ,
�mBs , CP violating parameters for K, D, Bd and Bs, the energy scale of new physics
⇤ ⇠ O(103) TeV in the case of CNP = 1 is assumed, or CNP is very small, of the order
of O(10�5) to O(10�11) if ⇤ = 1 TeV is assumed (see Table 3.1).

For the charged lepton sector, the constraint from flavour-changing processes (charged
lepton flavour violation) is even more severe. For instance, for µ+ ! e+�, one can con-
sider

CNP

⇤2
O(6)

ij !
Cµe

⇤2
eL�⇢⌫µR�F⇢⌫ . (3.4)

The present upper limit of B(µ! e�) < 2.4⇥ 10�12 gives

⇤ > 2⇥ 105 TeV ⇥ (Cµe)
1
2 . (3.5)

In the case of Cµe = 1, ⇤ can be O(105) TeV.
The good overall consistency of the quark flavour-changing processes and the strin-

gent limits of lepton flavour-changing processes indicates that there is not much room
for new sources of flavour symmetry breaking close to the TeV scale, or the scale of
new physics is very high. However, this is based on a very general argument. In some
specific theoretical models the constraints of new physics should be determined in a
model-dependent way, and sometimes the constraints could be less stringent.

In such theoretical models, we do expect small but detectable deviations from the
SM predictions, in selected special flavour-changing processes. They are the flavour-
changing processes with suppressed SM contributions, or the SM-forbidden processes
with no SM contribution.
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Table 3.1: Sensitivity of the sources of flavour symmetry breaking accessible at low energy in the
quark sector (from meson-antimeson mixing processes), given in Eq. (3.3). The observables in-
clude oscillation frequencies (�m) and CP-violating parameters for the di↵erent systems. Taken
from Ref. [1]; note that limits from the Bs have since been further tightened.

Operator Limits on ⇤ (TeV) Limits on CNP Observables
(CNP = 1) (⇤ = 1TeV)

Re Im Re Im
(sL�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK , "K

(sRdL)(sLdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK , "K

(cL�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD, |q/p|, �D

(cRuL)(cLuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD, |q/p|, �D

(bL�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mBd , S�KS

(bRdL)(bLdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mBd , S�KS

(bL�µsL)2 1.4⇥ 102 2.5⇥ 102 5.0⇥ 10�5 1.7⇥ 10�5 �mBs , S �
(bRsL)(bLsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs , S �

hand, this success may be embarrassing since it could exclude possible large contributions
of new physics at the TeV scale. For instance, new physics may be included as

Le↵ = LSM +
CNP

⇤2
O(6)

ij , (3.3)

where the second term represents the new physics contribution and CNP and ⇤ are
the coupling constant and the energy scale of new physics respectively, and O(6)

ij is a
dimension-six operator. For example, from the measurements of �mK , �mD, �mBd ,
�mBs , CP violating parameters for K, D, Bd and Bs, the energy scale of new physics
⇤ ⇠ O(103) TeV in the case of CNP = 1 is assumed, or CNP is very small, of the order
of O(10�5) to O(10�11) if ⇤ = 1 TeV is assumed (see Table 3.1).

For the charged lepton sector, the constraint from flavour-changing processes (charged
lepton flavour violation) is even more severe. For instance, for µ+ ! e+�, one can con-
sider

CNP

⇤2
O(6)

ij !
Cµe

⇤2
eL�⇢⌫µR�F⇢⌫ . (3.4)

The present upper limit of B(µ! e�) < 2.4⇥ 10�12 gives

⇤ > 2⇥ 105 TeV ⇥ (Cµe)
1
2 . (3.5)

In the case of Cµe = 1, ⇤ can be O(105) TeV.
The good overall consistency of the quark flavour-changing processes and the strin-

gent limits of lepton flavour-changing processes indicates that there is not much room
for new sources of flavour symmetry breaking close to the TeV scale, or the scale of
new physics is very high. However, this is based on a very general argument. In some
specific theoretical models the constraints of new physics should be determined in a
model-dependent way, and sometimes the constraints could be less stringent.

In such theoretical models, we do expect small but detectable deviations from the
SM predictions, in selected special flavour-changing processes. They are the flavour-
changing processes with suppressed SM contributions, or the SM-forbidden processes
with no SM contribution.
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Table 3.1: Sensitivity of the sources of flavour symmetry breaking accessible at low energy in the
quark sector (from meson-antimeson mixing processes), given in Eq. (3.3). The observables in-
clude oscillation frequencies (�m) and CP-violating parameters for the di↵erent systems. Taken
from Ref. [1]; note that limits from the Bs have since been further tightened.

Operator Limits on ⇤ (TeV) Limits on CNP Observables
(CNP = 1) (⇤ = 1TeV)

Re Im Re Im
(sL�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK , "K

(sRdL)(sLdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK , "K

(cL�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD, |q/p|, �D

(cRuL)(cLuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD, |q/p|, �D

(bL�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mBd , S�KS

(bRdL)(bLdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mBd , S�KS

(bL�µsL)2 1.4⇥ 102 2.5⇥ 102 5.0⇥ 10�5 1.7⇥ 10�5 �mBs , S �
(bRsL)(bLsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs , S �

hand, this success may be embarrassing since it could exclude possible large contributions
of new physics at the TeV scale. For instance, new physics may be included as

Le↵ = LSM +
CNP

⇤2
O(6)

ij , (3.3)

where the second term represents the new physics contribution and CNP and ⇤ are
the coupling constant and the energy scale of new physics respectively, and O(6)

ij is a
dimension-six operator. For example, from the measurements of �mK , �mD, �mBd ,
�mBs , CP violating parameters for K, D, Bd and Bs, the energy scale of new physics
⇤ ⇠ O(103) TeV in the case of CNP = 1 is assumed, or CNP is very small, of the order
of O(10�5) to O(10�11) if ⇤ = 1 TeV is assumed (see Table 3.1).

For the charged lepton sector, the constraint from flavour-changing processes (charged
lepton flavour violation) is even more severe. For instance, for µ+ ! e+�, one can con-
sider

CNP

⇤2
O(6)

ij !
Cµe

⇤2
eL�⇢⌫µR�F⇢⌫ . (3.4)

The present upper limit of B(µ! e�) < 2.4⇥ 10�12 gives

⇤ > 2⇥ 105 TeV ⇥ (Cµe)
1
2 . (3.5)

In the case of Cµe = 1, ⇤ can be O(105) TeV.
The good overall consistency of the quark flavour-changing processes and the strin-

gent limits of lepton flavour-changing processes indicates that there is not much room
for new sources of flavour symmetry breaking close to the TeV scale, or the scale of
new physics is very high. However, this is based on a very general argument. In some
specific theoretical models the constraints of new physics should be determined in a
model-dependent way, and sometimes the constraints could be less stringent.

In such theoretical models, we do expect small but detectable deviations from the
SM predictions, in selected special flavour-changing processes. They are the flavour-
changing processes with suppressed SM contributions, or the SM-forbidden processes
with no SM contribution.
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Table 3.1: Sensitivity of the sources of flavour symmetry breaking accessible at low energy in the
quark sector (from meson-antimeson mixing processes), given in Eq. (3.3). The observables in-
clude oscillation frequencies (�m) and CP-violating parameters for the di↵erent systems. Taken
from Ref. [1]; note that limits from the Bs have since been further tightened.

Operator Limits on ⇤ (TeV) Limits on CNP Observables
(CNP = 1) (⇤ = 1TeV)

Re Im Re Im
(sL�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK , "K

(sRdL)(sLdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK , "K

(cL�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD, |q/p|, �D

(cRuL)(cLuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD, |q/p|, �D

(bL�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mBd , S�KS

(bRdL)(bLdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mBd , S�KS
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(bRsL)(bLsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs , S �

hand, this success may be embarrassing since it could exclude possible large contributions
of new physics at the TeV scale. For instance, new physics may be included as

Le↵ = LSM +
CNP

⇤2
O(6)

ij , (3.3)

where the second term represents the new physics contribution and CNP and ⇤ are
the coupling constant and the energy scale of new physics respectively, and O(6)

ij is a
dimension-six operator. For example, from the measurements of �mK , �mD, �mBd ,
�mBs , CP violating parameters for K, D, Bd and Bs, the energy scale of new physics
⇤ ⇠ O(103) TeV in the case of CNP = 1 is assumed, or CNP is very small, of the order
of O(10�5) to O(10�11) if ⇤ = 1 TeV is assumed (see Table 3.1).

For the charged lepton sector, the constraint from flavour-changing processes (charged
lepton flavour violation) is even more severe. For instance, for µ+ ! e+�, one can con-
sider

CNP

⇤2
O(6)

ij !
Cµe

⇤2
eL�⇢⌫µR�F⇢⌫ . (3.4)

The present upper limit of B(µ! e�) < 2.4⇥ 10�12 gives

⇤ > 2⇥ 105 TeV ⇥ (Cµe)
1
2 . (3.5)

In the case of Cµe = 1, ⇤ can be O(105) TeV.
The good overall consistency of the quark flavour-changing processes and the strin-

gent limits of lepton flavour-changing processes indicates that there is not much room
for new sources of flavour symmetry breaking close to the TeV scale, or the scale of
new physics is very high. However, this is based on a very general argument. In some
specific theoretical models the constraints of new physics should be determined in a
model-dependent way, and sometimes the constraints could be less stringent.

In such theoretical models, we do expect small but detectable deviations from the
SM predictions, in selected special flavour-changing processes. They are the flavour-
changing processes with suppressed SM contributions, or the SM-forbidden processes
with no SM contribution.
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Table 3.1: Sensitivity of the sources of flavour symmetry breaking accessible at low energy in the
quark sector (from meson-antimeson mixing processes), given in Eq. (3.3). The observables in-
clude oscillation frequencies (�m) and CP-violating parameters for the di↵erent systems. Taken
from Ref. [1]; note that limits from the Bs have since been further tightened.

Operator Limits on ⇤ (TeV) Limits on CNP Observables
(CNP = 1) (⇤ = 1TeV)

Re Im Re Im
(sL�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK , "K

(sRdL)(sLdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK , "K

(cL�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD, |q/p|, �D

(cRuL)(cLuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD, |q/p|, �D

(bL�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mBd , S�KS
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hand, this success may be embarrassing since it could exclude possible large contributions
of new physics at the TeV scale. For instance, new physics may be included as

Le↵ = LSM +
CNP

⇤2
O(6)

ij , (3.3)

where the second term represents the new physics contribution and CNP and ⇤ are
the coupling constant and the energy scale of new physics respectively, and O(6)

ij is a
dimension-six operator. For example, from the measurements of �mK , �mD, �mBd ,
�mBs , CP violating parameters for K, D, Bd and Bs, the energy scale of new physics
⇤ ⇠ O(103) TeV in the case of CNP = 1 is assumed, or CNP is very small, of the order
of O(10�5) to O(10�11) if ⇤ = 1 TeV is assumed (see Table 3.1).

For the charged lepton sector, the constraint from flavour-changing processes (charged
lepton flavour violation) is even more severe. For instance, for µ+ ! e+�, one can con-
sider

CNP

⇤2
O(6)

ij !
Cµe

⇤2
eL�⇢⌫µR�F⇢⌫ . (3.4)

The present upper limit of B(µ! e�) < 2.4⇥ 10�12 gives

⇤ > 2⇥ 105 TeV ⇥ (Cµe)
1
2 . (3.5)

In the case of Cµe = 1, ⇤ can be O(105) TeV.
The good overall consistency of the quark flavour-changing processes and the strin-

gent limits of lepton flavour-changing processes indicates that there is not much room
for new sources of flavour symmetry breaking close to the TeV scale, or the scale of
new physics is very high. However, this is based on a very general argument. In some
specific theoretical models the constraints of new physics should be determined in a
model-dependent way, and sometimes the constraints could be less stringent.

In such theoretical models, we do expect small but detectable deviations from the
SM predictions, in selected special flavour-changing processes. They are the flavour-
changing processes with suppressed SM contributions, or the SM-forbidden processes
with no SM contribution.

Λ > O(105) TeV with Cµe~O(1)

ex: Charged lepton flavour violation (CLFV), 

µ→eγ (B<4.2x10-13  from MEG(2016))

Cµe~O(10-9) with Λ < O(1) TeV

or



CLFV Rate

R � 1
�4

Lepton (SM forbidden)
|ASM + �NP|2 � |ASM|2 + 2Re(ASM�NP) + |�N|2

rate



CLFV Rate
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Lepton (SM forbidden)
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Figure 14: Correlation between BR(µ → e γ) and BR(τ → µ γ) as a function of mN3
, for SPS

1a. The areas displayed represent the scan over θi as given in eq. (4.3). From bottom to top, the
coloured regions correspond to θ13 = 1◦, 3◦, 5◦ and 10◦ (red, green, blue and pink, respectively).
Horizontal and vertical dashed (dotted) lines denote the experimental bounds (future sensitivities).

Given that, as previously emphasised, µ → e γ is very sensitive to θ13, whereas this is not

the case for BR(τ → µ γ), and that both BRs display the same approximate behaviour

with mN3
and tan β, we now propose to study the correlation between these two observ-

ables. This optimises the impact of a θ13 measurement, since it allows to minimise the

uncertainty introduced from not knowing tanβ and mN3
, and at the same time offers a

better illustration of the uncertainty associated with the R-matrix angles. In this case,

the correlation of the BRs with respect to mN3
means that, for a fixed set of parameters,

varying mN3
implies that the predicted point (BR(τ → µ γ), BR(µ → e γ)) moves along

a line with approximately constant slope in the BR(τ → µ γ)-BR(µ → e γ) plane. On the

other hand, varying θ13 leads to a displacement of the point along the vertical axis. In

figure 14, we illustrate this correlation for SPS 1a, and for the previously selected mN3
and

θ1,2 ranges (c.f. eq. (4.3)). We consider the following values, θ13 = 1◦, 3◦, 5◦ and 10◦, and

only include the BR predictions allowing for a favourable BAU. In addition, and as done

throughout our analysis, we have verified that all the points in this figure lead to charged

lepton EDM predictions which are compatible with present experimental bounds. More

specifically, we have obtained values for the EDMs lying in the following ranges (in units

of e.cm):

10−39 ! |de| ! 2 × 10−35 , 6 × 10−37 ! |dµ| ! 1.5 × 10−32 , 10−34 ! |dτ | ! 4 × 10−31 .

(4.4)

For a fixed value of mN3
, and for a given value of θ13, the dispersion arising from

a θ1 and θ2 variation produces a small area rather than a point in the BR(τ → µ γ)-

BR(µ → e γ) plane. The dispersion along the BR(τ → µ γ) axis is of approximately one
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Figure 12: Correlation between µ ! e� and µ ! e conversion in Ti as obtained from

a general scan over the LHT parameters. The shaded area represents the present (light)

and future (darker) experimental constraints. The solid blue line represents the dipole

contribution to R(µTi ! eTi).

from models like the MSSM in which the dipole operator, displayed by the blue line,

yields the dominant contribution to Br(µ� ! e�e+e�) [92, 93]. It is clear from Fig. 11

that an improved upper bound on µ ! e�, which should be available from the MEG

experiment in the next years (shown by the dark grey area in Fig. 11), and in particular

its discovery will provide important information on µ� ! e�e+e� within the model in

question.

Next in Fig. 12 we show the µ ! e conversion rate in titanium (Ti), as a function of

Br(µ ! e�). We observe that the correlation between these two modes is much weaker

than the one between µ ! e� and µ� ! e�e+e�. Consequently, the ratio of these

two rates may again di↵er significantly from the prediction obtained in models where

the dipole operator is dominant. Such a distinction is however not possible for some

regions of the LHT parameter space, where the a priori dominant Z0-penguin and box

contributions cancel due to a destructive interference in R(µTi ! eTi).

In order to quantify how naturally a suppression of the µ ! e� decay rate below

the present experimental bounds can be obtained, we consider how much fine-tuning is

necessary to fulfil this bound. We would like to remind the reader that the measure

of fine-tuning �
BG

defined in (5.1) indicates the sensitivity of a particular observable

with respect to a small change in the model parameters. It by no means allows to make

statements for instance about the structure of the mixing matrices or the mass spectrum

of the model, but only about how rapidly an observable changes in the neighborhood of

a particular parameter configuration. No more than that the BG fine-tuning indicates

15

this experiment are included in Fig. 5. Both the !! 3"
and !! 3e modes at a super-B factory will constrain the
anarchic RS parameter space. The LHC also has sensitivity
to rare ! decays [30]; however, the projected sensitivities
are slightly weaker than the current B-factory constraints,
and have not been included. The expected sensitivities to
rare ! decays at a future linear collider are also weaker than
the limits set by the B-factories. Although the MKK !
1 TeV scales probed with !! l1 !l2l3 decays are lower
than those constrained by "" e conversion and "! 3e,
we stress that different model parameters are tested by each
set of processes.

B. Scan for the bulk Higgs field scenario

We now present the results of our scan over the bulk
Higgs parameter space. For the scan we set # # 0; we
present separately the # dependence of the most important
constraints.

We again begin by considering muon initiated processes.
The constraints from "! 3e and "" e conversion are
highly correlated, as we saw in the previous subsection.
Since the bounds from "" e conversion are stronger, we
focus on this and "! e$. We show in Fig. 6 scatter plots
of the predictions for BR$"! e$% and Bconv coming from
our scan of the RS parameter space, for the KK scales
MKK # 3, 5, 10 TeV. For "! e$ we include both the
current constraint from the Particle Data Group [24] and
the projected sensitivity of MEG [18]. The current bounds
from "! e$ are quite strong; from the MKK # 3 TeV

plot in Fig. 6, we see that only one parameter choice
satisfies the BR$"! e$% bound. This point does not sat-
isfy the "" e conversion constraint. We can estimate that
it would satisfy both bounds for MKK > 3:1 TeV. In our
scan over 1000 sets of model parameters the absolute
lowest scale allowed is thus slightly larger than 3 TeV.
Also, a large portion of the parameter set at both 5 and
10 TeV conflict with these bounds. We again find the need

FIG. 6 (color online). Scan of the "! e$ and "" e conversion predictions for MKK # 3, 5, 10 TeV and # # 0. The solid line
denotes the PDG bound on BR$"! e$%, while the dashed lines indicate the SINDRUM II limit on "" e conversion and the
projected MEG sensitivity to BR$"! e$%.

FIG. 7 (color online). Scan of the !! "$ and !! e$ pre-
dictions for MKK # 3 TeV and # # 0. The solid and dashed
lines are the current B-factory and projected super-B factory
limits, respectively.
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Given that both ‘i ! ‘j! and !a" ! "g" # gSM
" $=2 are

generated by dipole operators, it is natural to establish a
link between them. To this purpose, we recall the dominant
contribution to !a" is also provided by the chargino
exchange and can be written as
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with gc2"x; y$ defined as fc2"x; y$ in terms of
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It is then straightforward to deduce the relation
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To understand the relative size of the correlation, in the
limit of degenerate SUSY spectrum we get
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A more detailed analysis of the stringent correlation be-

tween the ‘i ! ‘j! transitions and !a" in our scenario is
illustrated in Fig. 6. Since the loop functions for the two
processes are not identical, the correlation is not exactly a
line; however, it is clear that the two observables are
closely connected. We stress that the numerical results
shown in Fig. 6 have been obtained using the exact for-
mulas reported in Ref. [41] for the supersymmetric con-
tributions to both B"‘i ! ‘j!$ and !a" (the simplified
results in the mass-insertion approximations in Eqs. (15)–
(19) have been shown only for the sake of clarity). The
inner dark-gray (red) areas are the regions where the
B-physics constraints are fulfilled. In our scenario the
B-physics constraints put a lower bound on MH and there-
fore, through the funnel-region relation, also on M1;2 (see
Figs. 3 and 4). As a result, the allowed ranges for !a" and
B"‘i ! ‘j!$ are correspondingly lowered. A complemen-
tary illustration of the interplay of B-physics observables,
dark-matter constraints, !a", and LFV rates—within our
scenario—is shown in Fig. 7.9

The normalization j'12
LLj ! 10#4 used in Figs. 6 and 7

corresponds to the central value in Eq. (14) for c& ! 1 and
M&R ! 1012 GeV. This normalization can be regarded as a
rather natural (or even pessimistic) choice.10 As can be

FIG. 6 (color online). Expectations for B""! e!$ and B"(! "!$ vs !a" ! "g" # gSM
" $=2, assuming j'12

LLj ! 10#4 and j'23
LLj !

10#2. The plots have been obtained employing the following ranges: 300 GeV * M~‘ * 600 GeV, 200 GeV * M2 * 1000 GeV,
500 GeV * " * 1000 GeV, 10 * tan% * 50, and setting AU ! #1 TeV, M~q ! 1:5 TeV. Moreover, the GUT relations M2 ' 2M1

and M3 ' 6M1 are assumed. The inner (red) areas correspond to points within the funnel region which satisfy the B-physics
constraints listed in Sec. III B [B"Bs ! "%"#$< 8& 10#8, 1:01<RBs! < 1:24, 0:8<RB(& < 0:9, !MBs ! 17:35+ 0:25 ps#1].

9For comparison, a detailed study of LFV transitions imposing
dark-matter constraints—within the constrained MSSM with
right-handed neutrinos—can be found in Ref. [42].

10For M&R , 1012 GeV other sources of LFV, such as the
quark-induced terms in grand unified theories cannot be ne-
glected [43]. As a result, in many realistic scenarios it is not
easy to suppress LFV entries in the slepton mass matrices below
the 10#4 level [38].
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FIG. 1: The dependence of B(µ ! e + �) on M1 in the case of NH (left panel) and IH (right panel) light neutrino
mass spectrum, for i) y = 0.001 (blue �), ii) y = 0.01 (green +), and iii) y = 0.1 (red ⇥). The horizontal dashed line
corresponds to the MEGA bound [33], B(µ ! e + �)  1.2 ⇥ 10�11. The horizontal dot-dashed line corresponds to
B(µ ! e+ �) = 10�13, which is the prospective sensitivity of the MEG experiment [34].
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At the minimum, using eqs. (3.18) and (3.19), we get:
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We will find next for which values of the CP violating phases � and ↵
21

this lower bound is equal to zero
and if the resulting ✓

13

, obtained from eq. (3.19), is compatible with the existing limits from the neutrino
oscillation data. We have min(|Uµ2 + iUµ1|2) = 0 if the Dirac and Majorana phases � and ↵

21

satisfy
the following conditions: tan � tan ↵21

2

= �3 and sgn(cos � cos ↵21
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) = �sgn(sin � sin ↵21
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). Taking cos � > 0
(cos � < 0) and using tan � = �3/ tan(↵
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/2) in eq. (3.19) we get:
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The solution (3.21) is compatible with the 3� upper limit of the CHOOZ mixing angle (see Table 1). In
general, one can always find a viable pair of CP violating phases ↵

21

and � satisfying the relations given
above in order to set the r.h.s. of eq. (3.20) equal to zero, if the mixing angle ✓

13

is su�ciently large, namely,
if sin ✓

13

> 3 � 2
p
2 ⇠= 0.17. More precisely, one finds, e.g. that |Uµ2 + iUµ1|2 ' 3.52 ⇥ 10�8 (2.43 ⇥ 10�6)

for s
13

' 0.2 (0.17), ↵
21

' 2.732 (⇡) and � ' 5.725 (10�3).
In order to interpret the results presented in Fig. 1, it proves convenient to use the analytic expressions

of B(µ ! e + �) in terms of the low energy neutrino parameters, the neutrino Yukawa coupling and the
RH neutrino mass, eqs. (3.6)�(3.11). Taking for concreteness sin2 ✓

23

⇠= 1/2, sin2 ✓
12

⇠= 1/3 and using

low-energy seesaw model
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Experimental Limits

at Present and in the Future

process present limit future
µ→eγ <4.2 x 10-13 <10-14 MEG at PSI
µ→eee <1.0 x 10-12 <10-16 Mu3e at PSI

µN→eN (in Al) none <10-16 Mu2e /  COMET
µN→eN (in Ti) <6.1 x  10-13 <10-18 PRISM

τ→eγ <1.1 x 10-7 <10-9 - 10-10 superKEKB
τ→eee <3.6 x 10-8 <10-9 - 10-10 superKEKB

τ→µγ <4.5 x 10-8 <10-9 - 10-10 superKEKB

τ→µµµ <3.2 x 10-8 <10-9 - 10-10 superKEKB/LHCb
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μ→eγ

• Event Signature

• Ee = Eγ = mμ/2 (=52.8 MeV)

• angle θμe=180 (back-to-back)

• time coincidence


• Backgrounds

• prompt physics backgrounds


• radiative muon decay 
μ→eννγ


• accidental backgrounds

Final MEG result (2016)

MEG II

Pisa,	12-04-2016 L.	Galli,	INFN	Pisa

Detector	overview
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goal ~ 4x10-14

2018-2020

Pisa,	12-04-2016 L.	Galli,	INFN	Pisa

MEG	II	at	a	glance
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μ→eee

• Event Signature

•  ΣEe = mμ

•  ΣPe = 0 (vector sum)

•  common vertex

•  time coincidence


• Backgrounds

• physics backgrounds


• μ→eννee decay 

• accidental backgrounds

R.Sawada NEUTRINO 2012

Mu3e experiment

27
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An Experiment to Search for the Decay µ → eee

Figure 11: Sketch of the MAPS detector design from [70].

Figure 12: Block diagram of the HV MAPS detector from [70].

5.5.1 High Voltage MAPS Technology

We propose to use Monolithic Active Pixel Sensors (MAPS) as tracking detect-
ors, as they integrate sensor and readout functionalities in the same device and
thus greatly reduce the material budget. Classical concepts like hybrid designs
usually have a higher material budget due to additional interconnects (bonds)
and extra readout chips, which downgrade the track reconstruction perform-
ance, especially at low track momentum.

First MAPS designs were such that ionisation charges were collected mainly
by diffusion, with a timing constant of several hundreds of nanoseconds. HV-
MAPS designs with high bias voltages exceeding 50 V, however, overcome this
problem and provide timing resolutions of better than 100 ns. We propose to
use the High Voltage MAPS (HV-MAPS) design with pixel electronics com-
pletely implemented inside the deep N-well, which was first proposed by [70]
and has since been successfully tested [71, 72]. Figure 11 shows a sketch of the
proposed Monolithic Pixel Detector. The readout circuitry, see Fig. 12, allows
an efficient zero suppression of pixel information and the implementation of
timestamps to facilitate the assignments of hits between different pixel layers.
For readout designs providing 50 ns timing resolutions power consumptions of
about 150 mW/cm2 are expected [73].

Because of the small size of the active depletion zone, the detectors can also
be thinned down to 50 µm or less, depending on the complexity and vertical size
of the readout circuitry. By “thinning”, the material budget can be significantly
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Target

Inner pixel layers

Scintillating fibres

Outer pixel layers

Recurl pixel layers

Scintillator tiles

μ Beam

Figure 8: Schematic view of the proposed experiment for the search of µ → eee
(not to scale). Shown are the detector components in the side view (top) and
in the transverse plane (bottom).

5 A Novel Experiment Searching for µ → eee

The proposed experiment aims for a sensitivity of B(µ+ → e+e−e+) < 10−16

(10−15) at 90% CL for a beam intensity of 2 ·109 (2 ·108) muon stops per second.
Reaching this sensitivity requires a large geometrical coverage and suppression
of any possible background to a level below 10−16.

The most serious backgrounds are considered to be the radiative muon decay
µ+ → e+e−e+ν̄µνe with a branching fraction of 3.4 · 10−5 and accidentals,
which must be efficiently suppressed by an excellent vertex and timing resolution
of the detector. Suppression of backgrounds requires a precise measurement
of the electron and positron momenta in order to reconstruct the kinematics.
By exploiting kinematical constraints accidental backgrounds can be further
reduced and missing momentum and energy due to the additional neutrinos in
the µ+ → e+e−e+ν̄µνe process can be detected. The kinematic reconstruction
of candidate events is mainly deteriorated by multiple scattering of the low
energy electrons. Therefore, the material budget of the target and detector,
which must be operated in a helium atmosphere, has to be kept to a minimum.

In summary, a detector capable of precise momentum, vertex and timing
reconstruction at very high rates is needed. We propose to construct an exper-
iment with a long high precision tracker based on thin silicon pixel detectors
and a system of time-of-flight hodoscopes, see Fig. 8, placed in a homogeneous
solenoidal magnetic field of about 1−1.5 Tesla. In the final sensitivity phase the
experiment shall be performed at the highest intensity muon beamline available
at PSI.
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Support sensors on KaptonTM prints, with 
aluminium signal and power lines

Four layers in two groups in a ~ 1.5 Tesla 
field
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• Need excellent resolutions to get rid of backgrounds
• Accidental BG : Vertex and timing 
• eeeνν decays   : Momentum

• The detector
• Scintillating fiber timing detector
• 100 ps resolution on average one electron

• Thin pixel silicon tracker
• High voltage monolithic active pixel (HVMAPS)
• Implement logic directly in N-well in the pixel
• Use a high voltage commercial process
• Small active region, fast charge collection
• Can be thinned down to <50 μm
• Low power consumption

(I.Peric, P. Fischer et al., NIM A 582 (2007) 876 (ZITI Mannheim, Uni Heidelberg))
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μ- to e+ conversion

Various theoretical models predict experimentally ac-
cessible rates. One is the minimum supersymmetric
model (MSSM) with R-parity violation, which allows the
predicted branching ratio of !!!e" conversion of the
level of 10!12, since the relevant " and "! parameters
are not constrained (Babu and Mohapatra, 1995). Left-
right symmetric models with a low-mass WR also predict
a !!!e"-conversion branching ratio of 10!14, a value
estimated by the same authors.

2. Event signature and backgrounds

The energy of the positron from !!!e" conversion is
given by

E!e"#m!!B!!Erec!#Z!2

$m!!B!!#Z!2 , (148)

where #Z!2 is the difference in the nuclear binding en-
ergy between the (A ,Z) and (A ,Z!2) nuclei, with the
excitation energy in the final nucleus taken into account.
Usually, it is assumed that a large fraction of the final
nucleus could be in the giant-dipole-resonance state,
which has a mean energy of 20 MeV and a width of 20
MeV. Therefore the e" from !!!e" conversion would

have a broad momentum distribution corresponding to
the width of giant-dipole-resonance excitation.

The principal background is radiative muon capture
or radiative pion capture, followed by asymmetric e"e!

conversion of the photon. For some nuclei, the end point
of the radiative-muon-capture background in Eq. (142)
can be selected to be well separated from the signal. The
background from radiative pion capture must be re-
duced by the rejection of pions in the beam.

3. Experimental status of !!!e" conversion

The SINDRUM II Collaboration at PSI has reported
a search for the charge-changing process !!"Ti→e"

"Ca in muonic atoms (Kaulard et al. 1998). It was car-
ried out simultaneously with a measurement of !!"Ti
→e!"Ti. The e" momentum spectrum is shown in Fig.
32. The results are given separately for the transition to
the ground state and that to the giant dipole resonance.
They are summarized in Table XIII, together with the
previous results.

E. Muonium to antimuonium conversion

A muonium atom is a hydrogenlike bound state of !"

and e!. The spontaneous conversion (or oscillation) of a
muonium atom (!"e! or Mu) to its antiatom, antimuo-
nium atom (!!e" or Mu,) is another interesting class of
muon LFV process. In this Mu!Mu conversion, the or-
dinary additive law of conservation of muon and elec-
tron numbers is violated by two units (#Le/!#$2),
whereas muon or electron number is conserved multipli-
catively (Feinberg and Weinberg, 1961). This possibility
was suggested by Pontecorvo in 1957 (Pontecorvo,
1957), even before the muonium atom was observed for
the first time at the Nevis cyclotron of Columbia Univer-
sity (Hughes et al., 1960).

1. Phenomenology of Mu!Mu conversion

Various interactions could induce !#Li!#2 processes,
such as Mu!Mu conversion, as discussed in Sec. III.E.
To discuss the phenomenology of the Mu!Mu conver-
sion, we take as an example the effective four-fermion

FIG. 32. Positron energy spectra of the !!"Ti→e""Ca re-
action; !!e"(gs) and !!e"(gr) are the expected signals for
the transitions to the ground state and to the giant-dipole-
resonance states, respectively. The assumed branching ratios
for gs and gr are 2.2%10!11 and 4.5%10!10 (provided by P.
Wintz).

TABLE XIII. Historical progress and summary of !!!e" conversion in various nuclei; gs and ex,
respectively, denote the transitions to the ground state and excited states (mostly giant-dipole-
resonance states), respectively.

Process 90%-C.L. upper limit Place Year Reference

!!"Cu→e""Co 2.6%10!8 SREL 1972 Bryman et al. (1972)
!!"S→e""Si 9%10!10 SIN 1982 Badertsher et al. (1982)
!!"Ti→e""Ca(gs) 9%10!12 TRIUMF 1988 Ahmad et al. (1988)
!!"Ti→e""Ca(ex) 1.7%10!10 TRIUMF 1988 Ahmad et al. (1988)
!!"Ti→e""Ca(gs) 4.3%10!12 PSI 1993 Dohmen et al. (1993)
!!"Ti→e""Ca(ex) 8.9%10!11 PSI 1993 Dohmen et al. (1993)
!!"Ti→e""Ca(gs) 1.7%10!12 PSI 1998 Kaulard et al. (1998)
!!"Ti→e""Ca(ex) 3.6%10!11 PSI 1998 Kaulard et al. (1998)
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!!"Ti→e""Ca(ex) 8.9%10!11 PSI 1993 Dohmen et al. (1993)
!!"Ti→e""Ca(gs) 1.7%10!12 PSI 1998 Kaulard et al. (1998)
!!"Ti→e""Ca(ex) 3.6%10!11 PSI 1998 Kaulard et al. (1998)
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Various theoretical models predict experimentally ac-
cessible rates. One is the minimum supersymmetric
model (MSSM) with R-parity violation, which allows the
predicted branching ratio of !!!e" conversion of the
level of 10!12, since the relevant " and "! parameters
are not constrained (Babu and Mohapatra, 1995). Left-
right symmetric models with a low-mass WR also predict
a !!!e"-conversion branching ratio of 10!14, a value
estimated by the same authors.

2. Event signature and backgrounds

The energy of the positron from !!!e" conversion is
given by

E!e"#m!!B!!Erec!#Z!2

$m!!B!!#Z!2 , (148)

where #Z!2 is the difference in the nuclear binding en-
ergy between the (A ,Z) and (A ,Z!2) nuclei, with the
excitation energy in the final nucleus taken into account.
Usually, it is assumed that a large fraction of the final
nucleus could be in the giant-dipole-resonance state,
which has a mean energy of 20 MeV and a width of 20
MeV. Therefore the e" from !!!e" conversion would

have a broad momentum distribution corresponding to
the width of giant-dipole-resonance excitation.

The principal background is radiative muon capture
or radiative pion capture, followed by asymmetric e"e!

conversion of the photon. For some nuclei, the end point
of the radiative-muon-capture background in Eq. (142)
can be selected to be well separated from the signal. The
background from radiative pion capture must be re-
duced by the rejection of pions in the beam.

3. Experimental status of !!!e" conversion

The SINDRUM II Collaboration at PSI has reported
a search for the charge-changing process !!"Ti→e"

"Ca in muonic atoms (Kaulard et al. 1998). It was car-
ried out simultaneously with a measurement of !!"Ti
→e!"Ti. The e" momentum spectrum is shown in Fig.
32. The results are given separately for the transition to
the ground state and that to the giant dipole resonance.
They are summarized in Table XIII, together with the
previous results.

E. Muonium to antimuonium conversion

A muonium atom is a hydrogenlike bound state of !"

and e!. The spontaneous conversion (or oscillation) of a
muonium atom (!"e! or Mu) to its antiatom, antimuo-
nium atom (!!e" or Mu,) is another interesting class of
muon LFV process. In this Mu!Mu conversion, the or-
dinary additive law of conservation of muon and elec-
tron numbers is violated by two units (#Le/!#$2),
whereas muon or electron number is conserved multipli-
catively (Feinberg and Weinberg, 1961). This possibility
was suggested by Pontecorvo in 1957 (Pontecorvo,
1957), even before the muonium atom was observed for
the first time at the Nevis cyclotron of Columbia Univer-
sity (Hughes et al., 1960).

1. Phenomenology of Mu!Mu conversion

Various interactions could induce !#Li!#2 processes,
such as Mu!Mu conversion, as discussed in Sec. III.E.
To discuss the phenomenology of the Mu!Mu conver-
sion, we take as an example the effective four-fermion

FIG. 32. Positron energy spectra of the !!"Ti→e""Ca re-
action; !!e"(gs) and !!e"(gr) are the expected signals for
the transitions to the ground state and to the giant-dipole-
resonance states, respectively. The assumed branching ratios
for gs and gr are 2.2%10!11 and 4.5%10!10 (provided by P.
Wintz).

TABLE XIII. Historical progress and summary of !!!e" conversion in various nuclei; gs and ex,
respectively, denote the transitions to the ground state and excited states (mostly giant-dipole-
resonance states), respectively.

Process 90%-C.L. upper limit Place Year Reference

!!"Cu→e""Co 2.6%10!8 SREL 1972 Bryman et al. (1972)
!!"S→e""Si 9%10!10 SIN 1982 Badertsher et al. (1982)
!!"Ti→e""Ca(gs) 9%10!12 TRIUMF 1988 Ahmad et al. (1988)
!!"Ti→e""Ca(ex) 1.7%10!10 TRIUMF 1988 Ahmad et al. (1988)
!!"Ti→e""Ca(gs) 4.3%10!12 PSI 1993 Dohmen et al. (1993)
!!"Ti→e""Ca(ex) 8.9%10!11 PSI 1993 Dohmen et al. (1993)
!!"Ti→e""Ca(gs) 1.7%10!12 PSI 1998 Kaulard et al. (1998)
!!"Ti→e""Ca(ex) 3.6%10!11 PSI 1998 Kaulard et al. (1998)
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duced by the rejection of pions in the beam.
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which has a mean energy of 20 MeV and a width of 20
MeV. Therefore the e" from !!!e" conversion would

have a broad momentum distribution corresponding to
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can be selected to be well separated from the signal. The
background from radiative pion capture must be re-
duced by the rejection of pions in the beam.

3. Experimental status of !!!e" conversion

The SINDRUM II Collaboration at PSI has reported
a search for the charge-changing process !!"Ti→e"

"Ca in muonic atoms (Kaulard et al. 1998). It was car-
ried out simultaneously with a measurement of !!"Ti
→e!"Ti. The e" momentum spectrum is shown in Fig.
32. The results are given separately for the transition to
the ground state and that to the giant dipole resonance.
They are summarized in Table XIII, together with the
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1957), even before the muonium atom was observed for
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Various interactions could induce !#Li!#2 processes,
such as Mu!Mu conversion, as discussed in Sec. III.E.
To discuss the phenomenology of the Mu!Mu conver-
sion, we take as an example the effective four-fermion
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action; !!e"(gs) and !!e"(gr) are the expected signals for
the transitions to the ground state and to the giant-dipole-
resonance states, respectively. The assumed branching ratios
for gs and gr are 2.2%10!11 and 4.5%10!10 (provided by P.
Wintz).

TABLE XIII. Historical progress and summary of !!!e" conversion in various nuclei; gs and ex,
respectively, denote the transitions to the ground state and excited states (mostly giant-dipole-
resonance states), respectively.

Process 90%-C.L. upper limit Place Year Reference
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μ- to e+ conversion

Various theoretical models predict experimentally ac-
cessible rates. One is the minimum supersymmetric
model (MSSM) with R-parity violation, which allows the
predicted branching ratio of !!!e" conversion of the
level of 10!12, since the relevant " and "! parameters
are not constrained (Babu and Mohapatra, 1995). Left-
right symmetric models with a low-mass WR also predict
a !!!e"-conversion branching ratio of 10!14, a value
estimated by the same authors.

2. Event signature and backgrounds

The energy of the positron from !!!e" conversion is
given by
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Usually, it is assumed that a large fraction of the final
nucleus could be in the giant-dipole-resonance state,
which has a mean energy of 20 MeV and a width of 20
MeV. Therefore the e" from !!!e" conversion would

have a broad momentum distribution corresponding to
the width of giant-dipole-resonance excitation.

The principal background is radiative muon capture
or radiative pion capture, followed by asymmetric e"e!

conversion of the photon. For some nuclei, the end point
of the radiative-muon-capture background in Eq. (142)
can be selected to be well separated from the signal. The
background from radiative pion capture must be re-
duced by the rejection of pions in the beam.

3. Experimental status of !!!e" conversion

The SINDRUM II Collaboration at PSI has reported
a search for the charge-changing process !!"Ti→e"

"Ca in muonic atoms (Kaulard et al. 1998). It was car-
ried out simultaneously with a measurement of !!"Ti
→e!"Ti. The e" momentum spectrum is shown in Fig.
32. The results are given separately for the transition to
the ground state and that to the giant dipole resonance.
They are summarized in Table XIII, together with the
previous results.

E. Muonium to antimuonium conversion

A muonium atom is a hydrogenlike bound state of !"

and e!. The spontaneous conversion (or oscillation) of a
muonium atom (!"e! or Mu) to its antiatom, antimuo-
nium atom (!!e" or Mu,) is another interesting class of
muon LFV process. In this Mu!Mu conversion, the or-
dinary additive law of conservation of muon and elec-
tron numbers is violated by two units (#Le/!#$2),
whereas muon or electron number is conserved multipli-
catively (Feinberg and Weinberg, 1961). This possibility
was suggested by Pontecorvo in 1957 (Pontecorvo,
1957), even before the muonium atom was observed for
the first time at the Nevis cyclotron of Columbia Univer-
sity (Hughes et al., 1960).

1. Phenomenology of Mu!Mu conversion

Various interactions could induce !#Li!#2 processes,
such as Mu!Mu conversion, as discussed in Sec. III.E.
To discuss the phenomenology of the Mu!Mu conver-
sion, we take as an example the effective four-fermion

FIG. 32. Positron energy spectra of the !!"Ti→e""Ca re-
action; !!e"(gs) and !!e"(gr) are the expected signals for
the transitions to the ground state and to the giant-dipole-
resonance states, respectively. The assumed branching ratios
for gs and gr are 2.2%10!11 and 4.5%10!10 (provided by P.
Wintz).

TABLE XIII. Historical progress and summary of !!!e" conversion in various nuclei; gs and ex,
respectively, denote the transitions to the ground state and excited states (mostly giant-dipole-
resonance states), respectively.
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!!"Cu→e""Co 2.6%10!8 SREL 1972 Bryman et al. (1972)
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!!"Ti→e""Ca(gs) 9%10!12 TRIUMF 1988 Ahmad et al. (1988)
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model (MSSM) with R-parity violation, which allows the
predicted branching ratio of !!!e" conversion of the
level of 10!12, since the relevant " and "! parameters
are not constrained (Babu and Mohapatra, 1995). Left-
right symmetric models with a low-mass WR also predict
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can be selected to be well separated from the signal. The
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whereas muon or electron number is conserved multipli-
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such as Mu!Mu conversion, as discussed in Sec. III.E.
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model (MSSM) with R-parity violation, which allows the
predicted branching ratio of !!!e" conversion of the
level of 10!12, since the relevant " and "! parameters
are not constrained (Babu and Mohapatra, 1995). Left-
right symmetric models with a low-mass WR also predict
a !!!e"-conversion branching ratio of 10!14, a value
estimated by the same authors.

2. Event signature and backgrounds

The energy of the positron from !!!e" conversion is
given by

E!e"#m!!B!!Erec!#Z!2

$m!!B!!#Z!2 , (148)

where #Z!2 is the difference in the nuclear binding en-
ergy between the (A ,Z) and (A ,Z!2) nuclei, with the
excitation energy in the final nucleus taken into account.
Usually, it is assumed that a large fraction of the final
nucleus could be in the giant-dipole-resonance state,
which has a mean energy of 20 MeV and a width of 20
MeV. Therefore the e" from !!!e" conversion would

have a broad momentum distribution corresponding to
the width of giant-dipole-resonance excitation.

The principal background is radiative muon capture
or radiative pion capture, followed by asymmetric e"e!

conversion of the photon. For some nuclei, the end point
of the radiative-muon-capture background in Eq. (142)
can be selected to be well separated from the signal. The
background from radiative pion capture must be re-
duced by the rejection of pions in the beam.

3. Experimental status of !!!e" conversion

The SINDRUM II Collaboration at PSI has reported
a search for the charge-changing process !!"Ti→e"

"Ca in muonic atoms (Kaulard et al. 1998). It was car-
ried out simultaneously with a measurement of !!"Ti
→e!"Ti. The e" momentum spectrum is shown in Fig.
32. The results are given separately for the transition to
the ground state and that to the giant dipole resonance.
They are summarized in Table XIII, together with the
previous results.

E. Muonium to antimuonium conversion

A muonium atom is a hydrogenlike bound state of !"

and e!. The spontaneous conversion (or oscillation) of a
muonium atom (!"e! or Mu) to its antiatom, antimuo-
nium atom (!!e" or Mu,) is another interesting class of
muon LFV process. In this Mu!Mu conversion, the or-
dinary additive law of conservation of muon and elec-
tron numbers is violated by two units (#Le/!#$2),
whereas muon or electron number is conserved multipli-
catively (Feinberg and Weinberg, 1961). This possibility
was suggested by Pontecorvo in 1957 (Pontecorvo,
1957), even before the muonium atom was observed for
the first time at the Nevis cyclotron of Columbia Univer-
sity (Hughes et al., 1960).

1. Phenomenology of Mu!Mu conversion

Various interactions could induce !#Li!#2 processes,
such as Mu!Mu conversion, as discussed in Sec. III.E.
To discuss the phenomenology of the Mu!Mu conver-
sion, we take as an example the effective four-fermion

FIG. 32. Positron energy spectra of the !!"Ti→e""Ca re-
action; !!e"(gs) and !!e"(gr) are the expected signals for
the transitions to the ground state and to the giant-dipole-
resonance states, respectively. The assumed branching ratios
for gs and gr are 2.2%10!11 and 4.5%10!10 (provided by P.
Wintz).

TABLE XIII. Historical progress and summary of !!!e" conversion in various nuclei; gs and ex,
respectively, denote the transitions to the ground state and excited states (mostly giant-dipole-
resonance states), respectively.

Process 90%-C.L. upper limit Place Year Reference

!!"Cu→e""Co 2.6%10!8 SREL 1972 Bryman et al. (1972)
!!"S→e""Si 9%10!10 SIN 1982 Badertsher et al. (1982)
!!"Ti→e""Ca(gs) 9%10!12 TRIUMF 1988 Ahmad et al. (1988)
!!"Ti→e""Ca(ex) 1.7%10!10 TRIUMF 1988 Ahmad et al. (1988)
!!"Ti→e""Ca(gs) 4.3%10!12 PSI 1993 Dohmen et al. (1993)
!!"Ti→e""Ca(ex) 8.9%10!11 PSI 1993 Dohmen et al. (1993)
!!"Ti→e""Ca(gs) 1.7%10!12 PSI 1998 Kaulard et al. (1998)
!!"Ti→e""Ca(ex) 3.6%10!11 PSI 1998 Kaulard et al. (1998)
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mass relation for target selection

Signal
RMC

Signal
RMC

2017-04-19 KPS Meeting 9

𝜇− → 𝑒+ sensitivity estimation for each case
1) Theoretical 𝐸𝑒𝑛𝑑

𝛾 = 101.9 MeV 2) Experimental 𝐸𝑒𝑛𝑑
𝛾 = 92 MeV

1) When 𝐸𝑒𝑛𝑑
𝛾 = 101.85 MeV

3𝜎 signal excess is found when Br(𝜇− → 𝑒+) is 2.1 × 10−12
(worse than the current limit: 1.7 × 10−12)

2) When 𝐸𝑒𝑛𝑑
𝛾 = 92 MeV : Almost background-free

Single event sensitivity is 1.36 × 10−14 → Two orders improvement

showing that aluminum 
is not a good target
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Charged lepton flavor violation (CLFV) is known to be
one of the important rare processes to search for new
physics beyond the standard model (SM). Various theoreti-
cal models predict sizable rates of CLFV processes, which
are just below the present experimental upper limits. The
ongoing and future experiments for CLFV searches might
reach sensitivities in a range of predictions by many theo-
retical models. At this moment, the CLFV searches with
muons have presented the best experimental limits owing
to a large number of muons available for measurements
[1]. Typical CLFV processes with muons include !þ !
eþ", !þ ! eþeþe!, and !!-e! conversion in a muonic
atom (!!N ! e!N). However, even if a CLFV process is
discovered in future, many other different CLFV processes
should be studied to shed light upon the understanding of
the nature of the CLFV interactions and develop insights
into new physics responsible for CLFV.

In this Letter, we propose a new CLFV reaction process
of a bound !! in a muonic atom, which is

!!e! ! e!e!; (1)

where!! and e! in the initial state of Eq. (1) are the muon
and the atomic 1S electron(s) bound in a Coulomb field of
the nucleus in a muonic atom, respectively.

This !!e! ! e!e! process in a muonic atom has vari-
ous significant advantages. First of all, this process could
have not only the photonic dipole interaction but also the
four-fermion contact interaction, as in the processes of
!þ ! eþe!e! and !!N ! e!N, but in contrast to
!þ ! eþ" that has only the former. This would allow us
potentially to investigate the full structure of new physics
beyond the SM. Second, this process has a two-body final
state, in which a sum of the energies of the two signal

electrons would be equal tom! þme ! B!, where B! is a
binding energy of the muon in a muonic atom. This would
provide a cleaner experimental signature as well as a larger
final-state phase space than!þ ! eþeþe! decay. Also, in
comparison with the !þ ! eþ" search, the measurement
of this process would be relatively easier since no photon
detection is involved. Third, one can consider a similar
reaction process with a muonium, such as !þe! ! eþe!.
However, the rate of this!þe! ! eþe! process cannot be
large because of small overlap between the !þ and e!

wave functions. However, in a muonic atom of atomic
number Z, we can increase the overlap between the !!

and e! wave functions if an atom of large Z is chosen. The
enhancement occurs owing to the Coulomb interaction
from the nucleus which attracts the 1S state electron wave
function towards the !! and the nucleus. The expected
rate would increase by a factor of ðZ! 1Þ3. For example,
the rate for a lead (Z ¼ 82) is 5& 105 times that of the
!þe!!eþe! reaction. However, in a muonic atom, nu-
clear muon capture occurs in addition to the normal Michel
muon decay in the 1S state. But since a lifetime of a mu-
onic atom changes from 2:2 !s for a hydrogen to '80 ns
for a lead, the branching ratio of!!e! ! e!e! is reduced
by a factor of at most only 20. Therefore, a net increase of
the branching ratio would become significant for a large
atomic number Z. A potential disadvantage is that the rates
of reaction processes like this might not be large enough
compared to rare CLFV muon decays. Therefore, in this
Letter we will evaluate the rate of !!e! ! e!e! and
discuss its upper limit that is allowed from the present
experimental limits of other CLFV processes.
We describe the process of !!e! ! e!e! in a muonic

atom by an effective Lagrangian at the energy scale of the
muon mass m!. Following Ref. [1], we define

L!!e!!e!e! ¼!4GFffiffiffi
2

p ½m!AR !!R#
!$eLF!$ þm!AL !!L#

!$eRF!$þ g1ð !!ReLÞð !eReLÞþ g2ð !!LeRÞð !eLeRÞþg3ð !!R"
!eRÞ

& ð !eR"!eRÞþg4ð !!L"
!eLÞð !eL"!eLÞþg5ð !!R"

!eRÞð !eL"!eLÞþg6ð !!L"
!eLÞð !eR"!eRÞþ ðH:c:Þ): (2)

PRL 105, 121601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 SEPTEMBER 2010

0031-9007=10=105(12)=121601(4) 121601-1 ! 2010 The American Physical Society

• µ-e-→e-e- has the overwrap of µ- 
and e- which is proportional to Z3.

• µ-e-→e-e- has two-body final state.
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Charged lepton flavor violation (CLFV) is known to be
one of the important rare processes to search for new
physics beyond the standard model (SM). Various theoreti-
cal models predict sizable rates of CLFV processes, which
are just below the present experimental upper limits. The
ongoing and future experiments for CLFV searches might
reach sensitivities in a range of predictions by many theo-
retical models. At this moment, the CLFV searches with
muons have presented the best experimental limits owing
to a large number of muons available for measurements
[1]. Typical CLFV processes with muons include !þ !
eþ", !þ ! eþeþe!, and !!-e! conversion in a muonic
atom (!!N ! e!N). However, even if a CLFV process is
discovered in future, many other different CLFV processes
should be studied to shed light upon the understanding of
the nature of the CLFV interactions and develop insights
into new physics responsible for CLFV.

In this Letter, we propose a new CLFV reaction process
of a bound !! in a muonic atom, which is

!!e! ! e!e!; (1)

where!! and e! in the initial state of Eq. (1) are the muon
and the atomic 1S electron(s) bound in a Coulomb field of
the nucleus in a muonic atom, respectively.

This !!e! ! e!e! process in a muonic atom has vari-
ous significant advantages. First of all, this process could
have not only the photonic dipole interaction but also the
four-fermion contact interaction, as in the processes of
!þ ! eþe!e! and !!N ! e!N, but in contrast to
!þ ! eþ" that has only the former. This would allow us
potentially to investigate the full structure of new physics
beyond the SM. Second, this process has a two-body final
state, in which a sum of the energies of the two signal

electrons would be equal tom! þme ! B!, where B! is a
binding energy of the muon in a muonic atom. This would
provide a cleaner experimental signature as well as a larger
final-state phase space than!þ ! eþeþe! decay. Also, in
comparison with the !þ ! eþ" search, the measurement
of this process would be relatively easier since no photon
detection is involved. Third, one can consider a similar
reaction process with a muonium, such as !þe! ! eþe!.
However, the rate of this!þe! ! eþe! process cannot be
large because of small overlap between the !þ and e!

wave functions. However, in a muonic atom of atomic
number Z, we can increase the overlap between the !!

and e! wave functions if an atom of large Z is chosen. The
enhancement occurs owing to the Coulomb interaction
from the nucleus which attracts the 1S state electron wave
function towards the !! and the nucleus. The expected
rate would increase by a factor of ðZ! 1Þ3. For example,
the rate for a lead (Z ¼ 82) is 5& 105 times that of the
!þe!!eþe! reaction. However, in a muonic atom, nu-
clear muon capture occurs in addition to the normal Michel
muon decay in the 1S state. But since a lifetime of a mu-
onic atom changes from 2:2 !s for a hydrogen to '80 ns
for a lead, the branching ratio of!!e! ! e!e! is reduced
by a factor of at most only 20. Therefore, a net increase of
the branching ratio would become significant for a large
atomic number Z. A potential disadvantage is that the rates
of reaction processes like this might not be large enough
compared to rare CLFV muon decays. Therefore, in this
Letter we will evaluate the rate of !!e! ! e!e! and
discuss its upper limit that is allowed from the present
experimental limits of other CLFV processes.
We describe the process of !!e! ! e!e! in a muonic

atom by an effective Lagrangian at the energy scale of the
muon mass m!. Following Ref. [1], we define

L!!e!!e!e! ¼!4GFffiffiffi
2

p ½m!AR !!R#
!$eLF!$ þm!AL !!L#

!$eRF!$þ g1ð !!ReLÞð !eReLÞþ g2ð !!LeRÞð !eLeRÞþg3ð !!R"
!eRÞ

& ð !eR"!eRÞþg4ð !!L"
!eLÞð !eL"!eLÞþg5ð !!R"

!eRÞð !eL"!eLÞþg6ð !!L"
!eLÞð !eR"!eRÞþ ðH:c:Þ): (2)
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What is Muon to Electron Conversion?

1s state in a 
muonic atom

nucleus

µ−

muon decay in orbit

nuclear muon capture

µ− + (A, Z)→νµ + (A,Z −1)

µ− → e−νν 

nucleus

muon to electron conversion

µ− + (A, Z)→ e− + (A,Z )

Event Signature : 
a single mono-energetic 
electron of 105 MeV
Backgrounds:
(1) physics backgrounds
(2) beam-related backgrounds 
(3) cosmic rays, false tracking

∝ Z5coherent process 
to the ground state

in vacuum in matter
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(discriminating effective interaction)
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C. Target dependence of ! ! e conversion

In principle, any single-operator model can be tested
with two conversion rates, even if! ! e" is not observed.
To illustrate this point, we update the analysis of Ref. [6]
and plot in Fig. 3 the conversion rate (normalized to the
rate in aluminum) as a function of the Z of the target
nucleus, for the four classes of single-operator models
defined above. Compared to Ref. [6], the novelty here is
the inclusion of a second vector model (VðZÞ).

The results of Fig. 3 show some noteworthy features.
First, we note the quite different target dependence of the
conversion rate in the two vector models considered. This
can be understood as follows: In the case of the Vð"Þ model,
the behavior in Fig. 3 simply traces the Z dependence of

VðpÞ (the photon only couples to the protons in the nu-
cleus). On the other hand, in the case of the VðZÞ model, the
Z boson couples predominantly to the neutrons in the

nucleus and the target dependence of the ratio VðnÞ=VðpÞ #
ðA$ ZÞ=Z generates the behavior observed in Fig. 3.
Next, let us focus on the actual discriminating power of

the Z dependence. Clearly, the plot shows that the model
discriminating power tends to increase with Z. This is a
simple reflection of the fact that the whole effect is of
relativistic origin and increases in heavy nuclei. So in an
ideal world, in order to maximize the chance to discrimi-
nate among underlying models, one would like to measure
the conversion rate in a light nucleus, say aluminum or
titanium, as well as in a large-Z nucleus, like lead or gold.
This simplified view, however, has to be confronted both
with theoretical uncertainties and the actual experimental
feasibility. Concerning the uncertainties, a simple analysis
shows that the dominant uncertainty coming from the
scalar matrix elements almost entirely cancels when taking
ratios of conversion rates (even using the conservative
range y2 ½0;0:4& for the strange scalar density matrix
element). Moreover, in the large-Z tail of the plot, some
residual uncertainty arises from the input on the neutron
density profile. When polarized proton scattering data ex-
ists, the uncertainty on the ratios of conversion rates be-
comes negligible. This point is illustrated by Table I, where
we report the detailed breakdown of uncertainties in the
ratios B!!eðTiÞ=B!!eðAlÞ and B!!eðPbÞ=B!!eðAlÞ. For
other targets, the uncertainty induced by neutron densities
never exceeds 5% [6]. The conclusions of this exercise are
that
(i) The theoretical uncertainties (scalar matrix elements

and neutron densities) largely cancel when we take a
ratio.

(ii) As evident from Fig. 3, a realistic discrimination
among models requires a measure of B!!eðTiÞ=
B!!eðAlÞ at the level of 5% or better, or alternatively
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FIG. 3 (color online). Target dependence of the ! ! e con-
version rate in different single-operator dominance models. We
plot the conversion rates normalized to the rate in aluminum
(Z ¼ 13) versus the atomic number Z for the four theoretical
models described in the text: D (blue), S (red), Vð"Þ (magenta),
VðZÞ (green). The vertical lines correspond to Z ¼ 13ðAlÞ, Z ¼
22ðTiÞ, and Z ¼ 83ðPbÞ.

TABLE I. Ratios of conversion rates in titanium and lead over
aluminum, in each of the four single-operator models: scalar (S),
dipole (D), vector 1 (photon coupling to the quarks), and vector 2
(Z boson coupling to the quarks). In the scalar model, the scalar
form factor induces a negligible uncertainty in the ratios involv-
ing two targets (denoted by the subscript y). In the case of lead
over aluminum, the small uncertainty is dominated by the
neutron density input (denoted by the subscript #n).

S D Vð"Þ VðZÞ

Bð!!e;TiÞ
Bð!!e;AlÞ 1:70( 0:005y 1.55 1.65 2.0

Bð!!e;PbÞ
Bð!!e;AlÞ 0:69( 0:02#n

1.04 1.41 2:67( 0:06#n
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FIG. 2 (color online). Ratio RðZÞ of ! ! e conversion over
Bð! ! e"Þ versus Z in the case of the dipole-dominance model.
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The experimental sensitivity to µ → e conversion on nuclei is expected to improve by four orders 
of magnitude in coming years. We consider the impact of µ → e flavour-changing tensor and axial-
vector four-fermion operators which couple to the spin of nucleons. Such operators, which have not 
previously been considered, contribute to µ → e conversion in three ways: in nuclei with spin they 
mediate a spin-dependent transition; in all nuclei they contribute to the coherent (A2-enhanced) spin-
independent conversion via finite recoil effects and via loop mixing with dipole, scalar, and vector 
operators. We estimate the spin-dependent rate in Aluminium (the target of the upcoming COMET and 
Mu2e experiments), show that the loop effects give the greatest sensitivity to tensor and axial-vector 
operators involving first-generation quarks, and discuss the complementarity of the spin-dependent and 
independent contributions to µ → e conversion.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

New particles and interactions beyond the Standard Model of 
particle physics are required to explain neutrino masses and mix-
ing angles. The search for traces of this New Physics (NP) is pur-
sued on many fronts. One possibility is to look directly for the new 
particles implicated in neutrino mass generation, for instance at 
the LHC [1] or SHiP [2]. A complementary approach seeks new 
interactions among known particles, such as neutrinoless double 
beta decay [3] or Charged Lepton Flavour Violation (CLFV) [4].

CLFV transitions of charged leptons are induced by the ob-
served massive neutrinos, at unobservable rates suppressed by 
(mν/mW )4 ∼ 10−48. A detectable rate would point to the existence 
of new heavy particles, as may arise in models that generate neu-
trino masses, or that address other puzzles of the Standard Model 
such as the hierarchy problem. Observations of CLFV are therefore 
crucial to identifying the NP of the lepton sector, providing infor-
mation complementary to direct searches.

From a theoretical perspective, at energy scales well below the 
masses of the new particles, CLFV can be parametrised with effec-
tive operators (see e.g. [5]), constructed out of the kinematically 
accessible Standard Model (SM) fields, and respecting the relevant 
gauge symmetries. In this effective field theory (EFT) description, 

* Corresponding author.
E-mail address: s.davidson@ipnl.in2p3.fr (S. Davidson).

information about the underlying new dynamics is encoded in the 
operator coefficients, calculable in any given model.

The experimental sensitivity to a wide variety of CLFV pro-
cesses is systematically improving. Current bounds on branching 
ratios of τ flavour changing decays such as τ → µγ , τ → eγ and 
τ → 3ℓ [6–8] are O(10−8), and Belle-II is expected to improve the 
sensitivity by an order of magnitude [9]. The bounds on the µ ↔ e
flavour changing processes are currently of order ∼ 10−12 [10,11], 
with the most restrictive constraint from the MEG collaboration: 
B R(µ → eγ ) ≤ 4.2 × 10−13 [12]. Future experimental sensitivities 
should improve by several orders of magnitude, in particular, the 
COMET [13] and Mu2e [14] experiments aim to reach a sensitivity 
to µ → e conversion on nuclei of ∼ 10−16, and the PRISM/PRIME 
proposal [15] could reach the unprecedented level of 10−18.

In searches for µ → e conversion, a µ− from the beam is cap-
tured by a nucleus in the target, and tumbles down to the 1s
state. The muon will be closer to the nucleus than an electron 
(r ∼ αZ/m), due to its larger mass. In the presence of a CLFV 
interaction with the quarks that compose the nucleus, or with 
its electric field, the muon can transform into an electron. This 
electron, emitted with an energy Ee ≃ mµ , is the signature of 
µ → e conversion.

Initial analytic estimates of the µ → e conversion rate were ob-
tained by Feinberg and Weinberg [16], a wider range of nuclei 
were studied numerically by Shankar [17], and relativistic effects 
relevant in heavier nuclei were included in Ref. [18]. State of the 
art conversion rates for a broad range of nuclei induced by CLFV 

http://dx.doi.org/10.1016/j.physletb.2017.05.053
0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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Science
素粒子の一つであるミューオンを世
界最高の効率で生成する装置
「MuSIC」。宇宙の始まりに何が起
こったのか、宇宙はどのような法則で
成り立っているのかを、大量のミュー
オンと最新技術を駆使して研究する

062 063

Osaka University

理学部は医学部とともに1931（昭和6）
年、大阪大学発足と同時に創設された最も
伝統ある学部です。当時、日本の産業の中
枢であった大阪の地には、模倣的な工業か
ら脱皮するには「基礎的純正理化学」の力
によらなければならない、という先見性と危
機感がありました。そうした時代と地域の要
請から大阪大学理学部が設立されたので
す。創設に際しては、政府の援助は受け
ず、設立基金や寄付金などすべて地元の
負担によって誕生に至ったとされています。
数学、物理、化学の3学科からなる理学

自然の中には不思議がいっぱいあります。その不思議に魅せ
られ、不思議を解き明かそうとする人たちが数学や物理､化
学、生物など自然科学の基礎となる自然法則を見つけ出して
きました。その自然法則を基本としながら、新たな不思議の扉
を開いていくのが理学部の目指すところです。
科学技術の進歩によって、人類の生活は豊かになってきまし

た。インターネットの普及によって情報の国境が消え、生命科
学の進展によって、これまで不治といわれた病気が治療できる
ようにもなってきました。このようなハイテク、バイオ、情報社
会を支えているのは直接的には技術ですが、その技術は理学
部領域の研究成果である基礎科学の力がなければ成り立たな
いものなのです。
具体的な例を挙げましょう。火星上の探査機に指令を正確に

理学部の歩みと概要

◉世界的で独創性豊かな
　研究者集団

自然の法則から
新たな不思議の扉を開く

●数学科 ●物理学科
●化学科 ●生物科学科

未
知
の
法
則
に

迫
る

理学部

部は当時、世界的に著名な物理学者だっ
た初代総長、長岡半太郎博士の創設の理
念によって発展の基礎が築かれました。権
威にとらわれない実力第一主義の教員選
考は今も受け継がれ、出身大学も多様なこ
とから、学閥意識のない自由で活力ある雰
囲気を作り出す基になっています。
理学部はノーベル賞受賞者の湯川秀樹
博士、「八木アンテナ」の発明で有名な八
木秀次博士ら多くの優れた研究者の手に
よって広い視野での基礎科学の発展に貢
献してきましたが、1949年に生物学科、
59年に高分子学科、91年には宇宙・地球
科学科が新設されました。その後、大学院
重点化への動きから理学研究科の専攻が
整理統合され、大学院の入学定員が大幅

送ることができる技術は150年以上も前に天才数学者、ガロ
アが考え出した理論（有限体）が応用されています。情報社会
を支える各種素子の開発には、アインシュタインの光量子仮説
やプランクのエネルギー量子論が大きく貢献しています。さら
には、遺伝子治療やゲノム創薬はワトソンとクリックのDNAの
構造解明がなければ、できなかったことです。
しかし、ガロアやアインシュタイン、ワトソンとクリックらは彼
らの研究成果が21世紀の科学技術をこれほどまでに発展させ
る原動力になると、当時は想像したでしょうか。いわんや、
ニュートンやメンデルら現代科学の基礎を築いた人たちは考
え及ばなかったでしょう。
現在の社会はこれまでの基礎科学の成果の上にのって発展

してきた先端の技術に目を奪われがちです。基礎となる理論
はすでにすべて解明されていると思われている人も多いので
はないでしょうか。
しかし、自然はそれほど簡単ではありません。細胞１つとって
みても、そのメカニズムのほんの一部がわかっているに過ぎま
せん。数学の分野でも解決されていない定理があり、素粒子論
も課題が山ほどあります。宇宙の成り立ちも未知の部分が限り
なくあります。理学部が挑まなければならない分野はまだまだ
無限にあるのです。
そして、これまでの成果をもとに新たな自然科学の法則を見

つけ出すことによって、地球環境問題の解決につながるなど人類
の未来に貢献することができるのではないかと考えています。

に増加。その際、理学部の学科も現在の4
学科になりました。96年度からの新体制は
国際的にも誇れる高度で、真に独創性豊か
な理学研究者集団として、世界的にも独自
な個性を持つ教育研究を目指すものです。
理学部関連の附属施設としては、構造

熱科学研究センター、原子核実験施設が
あり、国際的に高く評価される特色ある研
究活動を行っています。このほか産業科学
研究所、蛋白質研究所、核物理研究セン
ターなど学内の研究所等で、その設立に理
学部が重要な役割を果たしたものも少なく
ありません。そうした研究所やセンターに属
する多くの教員は理学部と密接な協力関
係を保っています。

◉
理
学
部
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やプランクのエネルギー量子論が大きく貢献しています。さら
には、遺伝子治療やゲノム創薬はワトソンとクリックのDNAの
構造解明がなければ、できなかったことです。
しかし、ガロアやアインシュタイン、ワトソンとクリックらは彼
らの研究成果が21世紀の科学技術をこれほどまでに発展させ
る原動力になると、当時は想像したでしょうか。いわんや、
ニュートンやメンデルら現代科学の基礎を築いた人たちは考
え及ばなかったでしょう。
現在の社会はこれまでの基礎科学の成果の上にのって発展

してきた先端の技術に目を奪われがちです。基礎となる理論
はすでにすべて解明されていると思われている人も多いので
はないでしょうか。
しかし、自然はそれほど簡単ではありません。細胞１つとって
みても、そのメカニズムのほんの一部がわかっているに過ぎま
せん。数学の分野でも解決されていない定理があり、素粒子論
も課題が山ほどあります。宇宙の成り立ちも未知の部分が限り
なくあります。理学部が挑まなければならない分野はまだまだ
無限にあるのです。
そして、これまでの成果をもとに新たな自然科学の法則を見

つけ出すことによって、地球環境問題の解決につながるなど人類
の未来に貢献することができるのではないかと考えています。

に増加。その際、理学部の学科も現在の4
学科になりました。96年度からの新体制は
国際的にも誇れる高度で、真に独創性豊か
な理学研究者集団として、世界的にも独自
な個性を持つ教育研究を目指すものです。
理学部関連の附属施設としては、構造

熱科学研究センター、原子核実験施設が
あり、国際的に高く評価される特色ある研
究活動を行っています。このほか産業科学
研究所、蛋白質研究所、核物理研究セン
ターなど学内の研究所等で、その設立に理
学部が重要な役割を果たしたものも少なく
ありません。そうした研究所やセンターに属
する多くの教員は理学部と密接な協力関
係を保っています。
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Science
素粒子の一つであるミューオンを世
界最高の効率で生成する装置
「MuSIC」。宇宙の始まりに何が起
こったのか、宇宙はどのような法則で
成り立っているのかを、大量のミュー
オンと最新技術を駆使して研究する

062 063

Osaka University

理学部は医学部とともに1931（昭和6）
年、大阪大学発足と同時に創設された最も
伝統ある学部です。当時、日本の産業の中
枢であった大阪の地には、模倣的な工業か
ら脱皮するには「基礎的純正理化学」の力
によらなければならない、という先見性と危
機感がありました。そうした時代と地域の要
請から大阪大学理学部が設立されたので
す。創設に際しては、政府の援助は受け
ず、設立基金や寄付金などすべて地元の
負担によって誕生に至ったとされています。
数学、物理、化学の3学科からなる理学

自然の中には不思議がいっぱいあります。その不思議に魅せ
られ、不思議を解き明かそうとする人たちが数学や物理､化
学、生物など自然科学の基礎となる自然法則を見つけ出して
きました。その自然法則を基本としながら、新たな不思議の扉
を開いていくのが理学部の目指すところです。
科学技術の進歩によって、人類の生活は豊かになってきまし

た。インターネットの普及によって情報の国境が消え、生命科
学の進展によって、これまで不治といわれた病気が治療できる
ようにもなってきました。このようなハイテク、バイオ、情報社
会を支えているのは直接的には技術ですが、その技術は理学
部領域の研究成果である基礎科学の力がなければ成り立たな
いものなのです。
具体的な例を挙げましょう。火星上の探査機に指令を正確に

理学部の歩みと概要

◉世界的で独創性豊かな
　研究者集団

自然の法則から
新たな不思議の扉を開く

●数学科 ●物理学科
●化学科 ●生物科学科

未
知
の
法
則
に

迫
る

理学部
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た初代総長、長岡半太郎博士の創設の理
念によって発展の基礎が築かれました。権
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考は今も受け継がれ、出身大学も多様なこ
とから、学閥意識のない自由で活力ある雰
囲気を作り出す基になっています。
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よって広い視野での基礎科学の発展に貢
献してきましたが、1949年に生物学科、
59年に高分子学科、91年には宇宙・地球
科学科が新設されました。その後、大学院
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Delivering the world’s most intense muon beam

S. Cook,1 R. D’Arcy,1 A. Edmonds,1 M. Fukuda,2 K. Hatanaka,2 Y. Hino,3 Y. Kuno,3

M. Lancaster,1 Y. Mori,4 T. Ogitsu,5 H. Sakamoto,3 A. Sato,3 N. H. Tran,3 N. M. Truong,3

M. Wing,1,* A. Yamamoto,5 and M. Yoshida5
1Department of Physics and Astronomy, UCL, Gower Street, London WC1E 6BT, United Kingdom

2Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan
3Department of Physics, Graduate School of Science, Osaka University, Osaka 569-0043, Japan

4Kyoto University Reactor Research Institute (KURRI), Kyoto 590-0494, Japan
5High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

(Received 25 October 2016; published 15 March 2017)

A new muon beam line, the muon science innovative channel, was set up at the Research Center for
Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a
target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently
decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid,
the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order
to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon
beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were
used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged
muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector.
Measurements, at a proton beam current of 6 pA, yielded ð10.4" 2.7Þ × 105 muons per watt of proton
beam power (μþ and μ−), far in excess of other facilities. At full beam power (400 W), this implies a rate of
muons of ð4.2" 1.1Þ × 108 muons s−1, among the highest in the world. The number of μ− measured was
about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for
future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or
the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of
particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed
matter, as well as other areas of scientific research.

DOI: 10.1103/PhysRevAccelBeams.20.030101

I. INTRODUCTION

High-intensity muon beams have applications in many
areas of science, spanning high-energy particle physics to
condensed matter physics and even areas of chemistry and
biology.Many results are limited by statistics, and, depending
on the experiment, up to and above 1018 muons per year are
required,whereas only1015 muons per year are available now.
In particle physics, intense muon beams are needed for

the following experiments and areas of investigation. Rare
muon decays such as charged lepton flavor violation
(CLFV) have attracted much attention theoretically and
experimentally [1,2]. As the Standard Model (SM) expect-
ation for such processes is so small [∼Oð10−54Þ], higher-
intensity muon beams could lead to the unequivocal

discovery of physics beyond the SM. There are several
current and planned experiments searching for CLFV with
muons. They are, for example, μ → eγ [3], μ − e con-
version in a muonic atom [4,5], and μ → eee [6]. In
particular, planned experiments of COMET [4] in Japan
and Mu2e [5] in the United States, which will search for
μ − e conversion with anticipated improvement of physics
sensitivity of 104, need high-intensity muon beams of 1018

muons per year. The properties of the muon such as its
mean lifetime, which gives a direct determination of the
Fermi constant, or anomalous magnetic moment have both
been measured to a precision of about one part per million
[7–9]. Given the approximate 3σ difference between the
theory and data in the measurement [8] of the anomalous
magnetic moment, new experiments to measure with a
factor of 4 better precision are currently under construction
[10,11]. Highly intense muon beams of 1021 muons per
year are needed for a muon collider, a machine that can
investigate the energy frontier, i.e. the TeV scale. A muon
collider has a number of advantages such as compactness
and lower synchrotron radiation compared to an eþe−

collider but also has a number of technical challenges [12].
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Muon to electron conversion at Fermilab
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Mu2e Detector 

Lindgren – Fermilab Snowmass PAC, June 21-25, 2011 15 

Proton beam hits production target in 
Production Solenoid. 
Pions captured and accelerated towards 
Transport Solenoid by graded field. 
Pions decay to muons. 

Transport solenoid performs sign and momentum 
selection. 
Eliminates high energy negative particles, positive 
particles and line-of-site neutrals. 

Muons captured in stopping target. 
Conversion electron trajectory measured 
in tracker, validated in calorimeter. 
Cosmic Ray Veto surrounds Detector 
Solenoid. 
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Production Solenoid. 
Pions captured and accelerated towards 
Transport Solenoid by graded field. 
Pions decay to muons. 

Transport solenoid performs sign and momentum 
selection. 
Eliminates high energy negative particles, positive 
particles and line-of-site neutrals. 

Muons captured in stopping target. 
Conversion electron trajectory measured 
in tracker, validated in calorimeter. 
Cosmic Ray Veto surrounds Detector 
Solenoid. 

Mu2e at Fermilab

The Mu2e experiment
Muon to electron conversion at Fermilab

Andrei Gaponenko

Fermilab

CIPANP-2012

http://mu2e.fnal.gov

Single-event sensitivity : (2.5±0.3)x10-17

Total background : (0.36±0.10) events
Expected limits : < 6x10-17 @90%C.L.
Running time: 3 years (2x107sec/year) proton beam power = 8 kW
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8GeV proton beam
5T pion 
 capture  
solenoid

3T muon transport 
(curved solenoids)

muon stopping 
target

electron tracker  
and calorimeter

electron  
transport

COMET = COherent Muon 
to Electron Transition

Physics sensitivity : (1.0-2.6)x10-17

Total background : 0.32 events
Expected limits : < 6x10-17@90%CL
Running time: 1 years (2x107sec)

proton beam power = 56 kW
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COMET Phase-I : 
physics run 2017-
BR(μ+Al→e+Al)<7x10-15 @ 90%CL
  *8GeV-3.2kW proton beam, 12 days
      *90deg. bend solenoid, cylindrical detector
      *Background study for the phase2

COMET Phase-II : 
physics run 2019-
BR(μ+Al→e+Al)<6x10-17 @ 90%CL
 *8GeV-56kW proton beam, 2 years
 *180deg. bend solenoid, bend spectrometer,  
   transverse tracker+calorimeter

Mu2e : 
physics run 2019-
BR(μ+Al→e+Al)<7x10-17 @ 90%CL
 *8GeV-8kW proton beam, 3 years
 *2x90deg. S-shape bend solenoid, 
  straw tracker+calorimeter

COMET Phase-I COMET Phase-II
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BR(μ+Al→e+Al)<7x10-15 @ 90%CL
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      *Background study for the phase2
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COMET Phase-I

pion production systemmuon transport systemdetector system

Single-event sensitivity : 3x10-15

Total background : 0.2 events
Expected limits : < 6x10-15 @90%CL
Running time: 150 days         
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Completed and Delivered!

6. Muon Beam

Figure 26: Overview of the COMET Phase-I Muon Beam line.

The COMET Phase-I muon beam line consists of a section for pion production and capture, a muon
transport section and a muon collimation section;. These three elements are descibed in the following
sections. At the ‘downstream’ end of the muon beam line is the detector solenoid. The schematic
layout of the COMET Phase-I muon beam line is shown in Fig. 26.

6.1 Pion Production

The COMET experiment uses negatively-charged low-energy muons, which can be easily stopped in
a suitable thin target. The low-energy muons are mostly produced by in-flight decay of low energy
pions. Therefore, the production of low energy pions is of major interest. Conversely, we wish to
eliminate high-energy pions, which could potentially cause background events.

6.1.1 Comparison of different hadron production codes

In order to study the pion and muon production yields, different hadron production simulations were
compared. The comparison of the backward yields of π− and µ− three metres away from the proton
target for different hadron production codes is given in Table 3. It is found that there are a factor of 2.5
difference between different hadron production programs. Among them, the QGSP BERT and FTFP BERT

hadron production models have the lowest yield. Therefore, to make a conservative estimation, the
QGSP BERT hadron production model is used to estimate and optimize the muon beam.

Figure 27 shows the momentum distributions for various particles produced by 8 GeV proton bom-
bardment at the location of the end of the pion capture solenoid sections.

6.1.2 Adiabatic transition from high to low magnetic fields

The pions captured at the pion capture system have a broad directional distribution. In order to
increase the acceptance of the muon beamline it is desiarable to make them more parallel to the beam
axis by changing the magnetic field adiabatically. From the Liouville theorem, the volume in the phase
space occupied by the beam particles does not change. Under a solenoidal magnetic field, the product

24
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6. Muon Beam

Figure 26: Overview of the COMET Phase-I Muon Beam line.

The COMET Phase-I muon beam line consists of a section for pion production and capture, a muon
transport section and a muon collimation section;. These three elements are descibed in the following
sections. At the ‘downstream’ end of the muon beam line is the detector solenoid. The schematic
layout of the COMET Phase-I muon beam line is shown in Fig. 26.

6.1 Pion Production

The COMET experiment uses negatively-charged low-energy muons, which can be easily stopped in
a suitable thin target. The low-energy muons are mostly produced by in-flight decay of low energy
pions. Therefore, the production of low energy pions is of major interest. Conversely, we wish to
eliminate high-energy pions, which could potentially cause background events.

6.1.1 Comparison of different hadron production codes

In order to study the pion and muon production yields, different hadron production simulations were
compared. The comparison of the backward yields of π− and µ− three metres away from the proton
target for different hadron production codes is given in Table 3. It is found that there are a factor of 2.5
difference between different hadron production programs. Among them, the QGSP BERT and FTFP BERT

hadron production models have the lowest yield. Therefore, to make a conservative estimation, the
QGSP BERT hadron production model is used to estimate and optimize the muon beam.

Figure 27 shows the momentum distributions for various particles produced by 8 GeV proton bom-
bardment at the location of the end of the pion capture solenoid sections.

6.1.2 Adiabatic transition from high to low magnetic fields

The pions captured at the pion capture system have a broad directional distribution. In order to
increase the acceptance of the muon beamline it is desiarable to make them more parallel to the beam
axis by changing the magnetic field adiabatically. From the Liouville theorem, the volume in the phase
space occupied by the beam particles does not change. Under a solenoidal magnetic field, the product
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CyDet (Cylindrical Detector)

the detector to be read out.

A key feature of COMET is to use a pulsed beam that allows for elimination of prompt beam back-
grounds by looking only at tracks that arrive after the beam pulse. Therefore, a momentum tracking
device should be able to withstand a large flux of particles during the burst of “beam flash” particles.
The time window for the measurement of electrons from µ−N → e−N conversion in COMET will
start after several hundred nanosecond after the prompt.

The dimensions of the CyDet are shown in Fig. 91. The length of the CDC at the inner wall is
1490.3 mm. The inner wall of the CDC is made of a 500 µm thick carbon fibre reinforced plastic
(CFRP). The endplates will be conical in shape. The thickness of the endplate is about 10 mm to
rigidly support the feedthroughs. The outer wall of the CDC is made of CFRP which is 5 mm thick.
Trigger hodoscopes are placed at both the upstream and downstream ends of the CDC. In addition,
to reduce protons emitted from nuclear muon capture, a cylindrical absorber that is also made CFRP
will be placed concentrically with respect to the CDC axis. A preliminary thickness of the proton
absorber is 0.5 mm. 13 14

CDC

Beam duct

3210

Stopping target

Return yoke

Superconducting coils

Shielding

Proton absorber

Trigger hodoscope

CDC inner wall CDC outer wall

Vacuum window

CDC endplate

300
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1577.3

49
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5

90
0
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36
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25
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16
10
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4

Collimator

Cryostat

10
7.

5

12
7.

5

Figure 91: The CyDet geometry used in the CyDet simulation studies in this TDR.

13All calculations presented in this report are based on this design except design of the inner wall and the absorber;
the inner wall and the absorber are modeled as a 100 µm thick aluminised Mylar and a 1 mm thick CFRP, respectively.
Total amount of mass is almost same. The thickness of absorber might change in further optimization in future.

14The geometry in Fig. 91 has no support structure of the trigger hodoscope, which is illustrated in Fig. 101. Opti-
mization of the geometry of the CDC including design of the collimator and the detector solenoid is underway. The final
geometry will be determined in near future considering engineering aspects.
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CDC Construction completed!

Mass-production
120 pcs.

7

Visual inspection

Function and 
Performance Test(1)

Function and 
Performance Test(2)

Aging
85°C, 24 hours

Repair

Repair

Dry storage

Pictures just after the Completion
3

CDC wire stringing 
completed in December 
2015.

CDC readout electronics 
completed in August 
2015. 



COMET Phase-I Signal Sensitivity

Energy

Signal Acceptance

Signal Sensitivity B(µ− + Al → e− + Al) ∼
1

Nµ · fcap · Ae

,

Muon intensity
With 0.4 µA, a running time of about 150 days is needed.

B(µ� + Al⇥ e� + Al) = 3.3� 10�17

B(µ� + Al⇥ e� + Al) < 7� 10�17 (90%C.L.)
3.1 -15

-15

The acceptance due to the time window cut, εtime, can be given by,

εtime =
Ntime

Nall
, (32)

Ntime =
n∑

i=1

∫ t2+Tsep(i−1)

t1+Tsep(i−1)
N(t)dt, (33)

where Nall and Ntime are the number of muons stopped in the target and the number of muons which
can decay in the window, respectively, Tsep is the time separation between the proton pulses, t1 and t2
are the start time and the close time of the measurement time window, respectively, and n indicates
the window for the nth pulse. The time distribution of the muon decay timing N(t) is obtained by
Monte Carlo simulations. In our case, t1 and t2 are 700 nsec and 1100 nsec, respectively and Tsep is
1.17 µsec, and εtime of 0.3 is obtained.

Figure 164: Efficiency of the time window cut for aluminium as a function of the end time of the time window.
The width of the proton pulses of 100 ns is included.

16.1.5 Net Acceptance of signals

It is assumed that the efficiencies of trigger, DAQ, and reconstruction are about 0.8 for each. From
these, the net acceptance for the µ−N → e−N conversion signal, Aµ-e = 0.043 is obtained. The
breakdown of the acceptance is shown in Table 28.

Table 28: Breakdown of the µ−N → e−N conversion signal acceptance.

Event selection Value Comments
Geometrical acceptance 0.37
Track quality cuts 0.66
Momentum selection 0.93 103.6 MeV/c < Pe <106.0 MeV/c
Timing window 0.3 700 ns < t < 1100 ns
Trigger efficiency 0.8
DAQ efficiency 0.8
Track reconstruction efficiency 0.8
Total 0.043

142

the DIO electrons is presented in Section 17.2. In this study, the momentum cut of 103.6 MeV/c <
Pe < 106.0 MeV/c, where Pe is the momentum of electron, is determined as shown in Fig. 107 [61].
According to this study, the contamination from DIO electrons of 0.01 events is expected for a single
event sensitivity of the µ−N → e−N conversion of 3.1× 10−15.
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Figure 106: Left: Distributions of the reconstructed µ−N → e−N conversion signals and reconstructed DIO
events. The vertical scale is normalized so that the integrated area of the signal is equal to one event with its
branching ratio of B(µN → eN) = 3.1× 10−15. Right: The integrated fractions of the µ−N → e−N conversion
signals and DIO events as a function of the low side of the integration range and the high side of the integration
range is 106 MeV/c. The momentum window for signals is selected to be fro 103.6 MeV/c to 106 MeV/c so
that the DIO contamination would be 0.01 events.

16.1.4 Time window for signals

The muons stopped in the muon-stopping target have the lifetime of a muonic atom. The lifetime
of muons in aluminium is about 864 nanoseconds. The µ−N → e−N conversion electrons can be
measured between the proton pulses to avoid beam-related background events. However, some beam-
related backgrounds would come late after the prompt timing, such as pions in a muon beam. There-
fore, the time window for search is chosen to start at some time after the prompt timing. As discussed
in Section 16.2, the starting time of time window of measurement of 700 nanoseconds is assumed,
although it would be optimized in the future offline analysis.

The acceptance due to the time window cut, εtime, can be given by,

εtime =
Ntime

Nall
, (9)

Ntime =
n∑

i=1

∫ t2+Tsep(i−1)

t1+Tsep(i−1)
N(t)dt, (10)

where Nall and Ntime are the number of muons stopped in the target and the number of muons which
can decay in the window, respectively, Tsep is the time separation between the proton pulses, t1 and t2
are the start time and the close time of the measurement time window, respectively, and n indicates
the window for the nth pulse. The time distribution of the muon decay timing N(t) is obtained by
Monte Carlo simulations. In our case, t1 and t2 are 700 nsec and 1100 nsec, respectively and Tsep is
1.17 µsec, and εtime of 0.3 is obtained.

16.1.5 Net Acceptance of signals

it is assumed that the efficiencies of trigger, DAQ, and reconstruction efficacy are about 0.8 for each.
From these, the net acceptance for the µ−N → e−N conversion signal, Aµ-e = 0.043 is obtained. The
breakdown of the acceptance is shown in Table 24.
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COMET Phase-I Signal Sensitivity

Energy

Signal Acceptance

• fcap = 0.6

• Ae = 0.043 

• Nμ = 1.23x1016 muons

Signal Sensitivity B(µ− + Al → e− + Al) ∼
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Muon intensity
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, (32)
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i=1

∫ t2+Tsep(i−1)

t1+Tsep(i−1)
N(t)dt, (33)

where Nall and Ntime are the number of muons stopped in the target and the number of muons which
can decay in the window, respectively, Tsep is the time separation between the proton pulses, t1 and t2
are the start time and the close time of the measurement time window, respectively, and n indicates
the window for the nth pulse. The time distribution of the muon decay timing N(t) is obtained by
Monte Carlo simulations. In our case, t1 and t2 are 700 nsec and 1100 nsec, respectively and Tsep is
1.17 µsec, and εtime of 0.3 is obtained.

Figure 164: Efficiency of the time window cut for aluminium as a function of the end time of the time window.
The width of the proton pulses of 100 ns is included.

16.1.5 Net Acceptance of signals

It is assumed that the efficiencies of trigger, DAQ, and reconstruction are about 0.8 for each. From
these, the net acceptance for the µ−N → e−N conversion signal, Aµ-e = 0.043 is obtained. The
breakdown of the acceptance is shown in Table 28.

Table 28: Breakdown of the µ−N → e−N conversion signal acceptance.

Event selection Value Comments
Geometrical acceptance 0.37
Track quality cuts 0.66
Momentum selection 0.93 103.6 MeV/c < Pe <106.0 MeV/c
Timing window 0.3 700 ns < t < 1100 ns
Trigger efficiency 0.8
DAQ efficiency 0.8
Track reconstruction efficiency 0.8
Total 0.043
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the DIO electrons is presented in Section 17.2. In this study, the momentum cut of 103.6 MeV/c <
Pe < 106.0 MeV/c, where Pe is the momentum of electron, is determined as shown in Fig. 107 [61].
According to this study, the contamination from DIO electrons of 0.01 events is expected for a single
event sensitivity of the µ−N → e−N conversion of 3.1× 10−15.
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Figure 106: Left: Distributions of the reconstructed µ−N → e−N conversion signals and reconstructed DIO
events. The vertical scale is normalized so that the integrated area of the signal is equal to one event with its
branching ratio of B(µN → eN) = 3.1× 10−15. Right: The integrated fractions of the µ−N → e−N conversion
signals and DIO events as a function of the low side of the integration range and the high side of the integration
range is 106 MeV/c. The momentum window for signals is selected to be fro 103.6 MeV/c to 106 MeV/c so
that the DIO contamination would be 0.01 events.

16.1.4 Time window for signals

The muons stopped in the muon-stopping target have the lifetime of a muonic atom. The lifetime
of muons in aluminium is about 864 nanoseconds. The µ−N → e−N conversion electrons can be
measured between the proton pulses to avoid beam-related background events. However, some beam-
related backgrounds would come late after the prompt timing, such as pions in a muon beam. There-
fore, the time window for search is chosen to start at some time after the prompt timing. As discussed
in Section 16.2, the starting time of time window of measurement of 700 nanoseconds is assumed,
although it would be optimized in the future offline analysis.

The acceptance due to the time window cut, εtime, can be given by,

εtime =
Ntime

Nall
, (9)

Ntime =
n∑

i=1

∫ t2+Tsep(i−1)

t1+Tsep(i−1)
N(t)dt, (10)

where Nall and Ntime are the number of muons stopped in the target and the number of muons which
can decay in the window, respectively, Tsep is the time separation between the proton pulses, t1 and t2
are the start time and the close time of the measurement time window, respectively, and n indicates
the window for the nth pulse. The time distribution of the muon decay timing N(t) is obtained by
Monte Carlo simulations. In our case, t1 and t2 are 700 nsec and 1100 nsec, respectively and Tsep is
1.17 µsec, and εtime of 0.3 is obtained.

16.1.5 Net Acceptance of signals

it is assumed that the efficiencies of trigger, DAQ, and reconstruction efficacy are about 0.8 for each.
From these, the net acceptance for the µ−N → e−N conversion signal, Aµ-e = 0.043 is obtained. The
breakdown of the acceptance is shown in Table 24.
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Summary

• Charged lepton flavor violation 
(CLFV) would provide the best 
opportunity to search for new 
physics beyond the SM. 


• Next generation experiments 
for CLFV with muons are 
coming.

• MEG II for µ→eγ

• Mu3e for µ→eee

• COMET and Mu2e for muon 

to electron conversion.

• Stay tuned…
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