Coherent Elastic Scattering of Neutrino with Nucleus (vA_{el})

Vivek Sharma

On behalf of TEXONO Collaboration

Institute of Physics, Academia Sinica, Taiwan Banaras Hindu University, Varanasi, India

Outline of Talk ..

- Introduction and Motivation.
- Global Status of vA_{el}.
- **TEXONO Facilities.**
- vA_{el} at KSNL.
- Background and Threshold.
- Sensitivity of Experiment.
- Coherency in vA_{el} scattering
- Summary.

Coherent Neutrino-Nucleus Scattering

A neutrino interacts with a nucleus of neutron number "N" via exchange of Z - Boson.

 $v + N \longrightarrow v + N$

Cross-Section of VA_{el}: $\frac{d\sigma_{\nu A_{el}}}{dq^2}(q^2, E_{\nu}) = \frac{1}{2} \left[\frac{G_F^2}{4\pi} \right] \left[1 - \frac{q^2}{4E_{\nu}^2} \right] [\varepsilon Z - N]^2 F(q^2)$

Where G_F is fermi constant, E_v is incident neutrino energy, Z(N) is Atomic(Neutron) number of nuclei and q is three momentum transfer.

 $F(q^2)$ is nuclear form factor approaches to ~1 at small momentum transfer.

 $\varepsilon = 1 - 4 \operatorname{Sin}^2 \Theta_{W} = 0.045$

Heavier nuclei — larger cross-section

- This process is coherent upto ~<50 MeV neutrino
- Cross-section is well-defined in Standard Model.
- Not been observed experimentally.

N

 Z^0

N

Important to study for ...

- Important role in Supernova Explosions.
- Test of fundamental SM-electroweak interaction.
- In study of Beyond Standard Model Physics.
- Probe transition of Quantum Mechanical Coherency in electro-weak process.
- Potential use in Reactor
 monitoring as a portable device.
- vA_{el} Scattering is important to study the irreducible background for Dark Matter search.

Requirements to observe vA

- High Neutrino Flux
- Lower Threshold
- Better Resolution
- Quenching Factor
- Understanding of Background
- Better Shielding from Gamma, Neutrons etc..
- Sufficient Source On/Off Statistics

Measureable Cross-Section of vA

COHERENT at SNS (ORNL)

- Protons of energy ~1 GeV are bombarded in bunches with 700 ns wide bursts.
- Beam is used to bombard on spallation target with 60 Hz POT frequency.
- As a by product a huge neutrino flux is produced.

$$\pi^+ \to \mu^+ + \nu_\mu , \quad \mu^+ \to e^+ + \nu_e + \overline{\nu}_\mu$$

ArXiv: 1509.08702v1, Sept. 2015

Other vA_{el} Experiments

CONNIE Experiment

- Angra II Reactor @ Brazil, Power = 3.95 GW
- Distance from core = 30 m
- Neutrino Flux ~ 7.8×10^{12} cm⁻²s⁻¹
- At 0 keV threshold ~ 33 events kg⁻¹day⁻¹ are expected.
- Detector mass = 5.2 g
- Net mass of prototype = 52 g

MINER Experiment

- A&M University Texas, Reactor Power = 1 MW
- Germanium and Silicon detectors.
- Distance from core = 2.3 m
- Neutrino Flux ~ 4×10^{11} cm⁻²s⁻¹
- Huge thermal, fast neutron and gamma flux.
- Background of 100 per kg-day in 10-1000 eV_m
- Expected count rate ~ 20 kg⁻¹ day⁻¹ recoil energy between $10 1000 \text{ keV}_{nr}$

Phys. Rev. D. 91, 072001 (2015)

arXiv: 1609.02066v1

TEXONO Collaboration

- **TEXONO (T**aiwan **EX**periment **O**n **N**eutrin**O**) Experiment is located at **Kuo-Sheng Nuclear Power Plant -II** on northern shore of Taiwan.
- <u>**Theme:</u>** Low Energy Neutrino Physics and Dark Matter Searches.</u>
- Collaboration with Turkey, China and India.
- The reactor power of 2.9 GW gives 6.35×10¹² cm⁻² s⁻¹ electron anti-neutrinos at a distance of 28 m.
- Collaboration with CDEX Underground Dark-Matter Experinemt, China.

Kuo-Sheng Reactor Laboratory (KSNL)

Neutrino Properties and Interaction at KSNL

Hardware and Thresholds

Generation	Mass (g)	Pulsar FWHM (eV _{ee})	Threshold (eV _{ee})
G1	500	130	500
G2	900	100	300
G3	1430	soon	soon

G3 Detector

Advantages of G-3 Electro-cooled HPGe Detectors:

- ≻ No liquid Nitogen required.
- Controlled microphonic noise.
- Customized achievable temperature.

Electrically Refrigerated HPGe Detector

vA_{el} Scattering Rate at KSNL

Quenching Factor and Recoil Energy

Recoil Energy (keV)

vA_{el} at KSNL with Reactor neutrino...

Threshold	300 eV	200 eV	150 eV	100 eV
Differential	0.8 cpkkd	8.3 cpkkd	27.3 cpkkd	109.5 cpkkd
Integral	0.04 cpkd	0.47 cpkd	1.6 cpkd	6.4 cpkd

Threshold and Background at KSNL

Channeling Fraction

- Channeling increase counts at higher energy.
- Quenching factor is assumed to be ~1
- Estimated Channeling in NaI is ~3 %

Sensitivity Towards VA_{el} Scattering

- Better to have High On/Off Statistics
- Threshold required below ~200 eV

Coherency in vA_{*o*} **Scattering**

Form-Factor:

- Gives an idea about coherency within the nucleons.
- Used for study of Nuclear Structure.
- Complete Coherence at low Energy.
- vA_{el} measures the neutron distribution

Form-Factor is fourier transformation of Charge distribution in the nucleus:

$$F(q) = \frac{1}{A} \int \rho(r) e^{-i\mathbf{q}.\mathbf{r}} d^3r$$

Helm Model Form-Factor:

$$F(q) = \frac{3j_1(qR)}{qR}e^{-(qs)^2/2} = 3\frac{\sin(qR) - qR\cos(qR)}{(qR)^3}e^{-(qs)^2/2}$$

Coherency in vA_{el} **Scattering**

- The finite phase of net combined amplitude vector can define degree of coherency.
- Combined amplitude can be defined as:

$$\mathcal{A} = \sum_{j=1}^{Z} e^{i\theta_j} \mathcal{X}_j + \sum_{k=1}^{N} e^{i\theta_k} \mathcal{Y}_k \qquad \text{where} \quad (\mathcal{Y}_n, \mathcal{X}_m) = (1, -\varepsilon)$$

- The cross-section comprise $(N + Z)^2$ terms.
- In total cross-section $\sigma_{\nu A_{el}}(Z, N) \propto AA^{\dagger}$, average phase mis-alignment angle follows:

$$e^{i(\theta_j - \theta_k)} - e^{-i(\theta_j - \theta_k)} = 2\cos(\theta_j - \theta_k) = 2\cos\langle\phi\rangle$$

• Degree of coherency described as: $\alpha = \cos(\phi) \in [0, 1]$

$$\frac{\sigma_{\nu A_{el}}(Z,N)}{\sigma_{\nu A_{el}}(0,N)} = Z\varepsilon^{2}[1+\alpha(Z-1)] + N[1+\alpha(N-1)] - 2\alpha\varepsilon ZN$$

$$\sigma_{\nu A_{el}}(\alpha) = \frac{\sigma_{\nu A_{el}}(Z,N)}{\sigma_{\nu A_{el}}(0,1)} \propto \begin{cases} [\varepsilon^{2}Z+N], & \alpha = 0 \text{ (incoherent)} \\ [\varepsilon Z-N]^{2}, & \alpha = 1 \text{ (coherent)} \end{cases}$$
Phys. Rev. D 93, 113006 (2016)

Contour for Degree of coherency

Coherency and Relative cross-section..

Continued..

Expected averaged degree of coherency and relative cross-section for various neutrino source with Germanium target

Summary

- Study of vA_{el} interaction has importance in order to study the electroweak interaction in SM, Astrophysics and Irriducible background in Dark Matter searches.
- vA_{el} can be probed by several experiments in the near future with different neutrino sources.
- Studies for vA_{el} from different neutrino sources probe transitions of QM Coherency in Electroweak process.
- Probe to BSM using vA_{el} interaction with low energy neutrinos is less vulnerable to uncertainties in coherency and Form-Factor.
- Ultra low energy threshold 300 eV is achieved and 150 eV is expected from future detector.
- Roadmap is ready to probe vA_{el} in near future.

Thank You ..

Neutrino Sources for vA

Neutrino Source	Reactor	DAR	Solar
Flux	~2 × 10 ¹⁷ s ⁻¹ per MW	~10 ¹⁵ S ⁻¹	~2.7 × 10 ⁶ cm ⁻² s ⁻¹ (⁸ B)
Pros. Cons.	Huge and Pure neutrino Flux, Few MeV	Various flavors, v-like backgrounds	Small flux