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Neutrino Oscillations In One Slide

•  Flavor eigenstates are not the same as mass eigenstates
•  The existence of 3 generations of neutrinos means that 

there’s a possibility of observing CP-violation in neutrino 
oscillations

•  We also can use oscillations to tell us if the mass ordering of 
the neutrinos is like that of other fermions

•  It’s all done by measuring oscillation probabilities vs. Energy
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Next Steps in Neutrino Oscillation Measurements 

•  Ambitious plans for new oscillation experiments:  expect 1000’s of events
–  Because of “large” mixing angles, will be looking for small differences in 

oscillation probabilities between neutrino and antineutrino mode
–  Neutrino Energy is a big part of extracting oscillation parameters
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We are entering a world where systematics are important

•  “θ13 is large”:  need to understand signal process AND 
background process

•  How a neutrino’s energy shows up in a detector is an 
important effect:  both for water-cerenkov and “fully active” 
detectors
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Why is reconstructing Neutrino Energy complicated? 

•  The nucleus is a complicated place…
•  First you have to get the quarks inside the proton right
•  Then you have to get the nucleons inside the nucleus right
•  Then you have to get the effects on the nucleus on the 

outgoing particles right
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MINERvA’s vital statistics

•  Broad Range of Neutrino Energies
–  This gives a broad range of interaction channels
–  Able to measure νµ and νe both 

•  Capable detector
–  Low thresholds, good particle identification 

•  High intensity Neutrino Beam
–  Provides high statistics, but…  
–  Need good flux constraints too 

•  Broad Range of Target Nuclei 
–  To constrain both the nucleon-level processes and the role of 

the nucleus in what actually enters the detector
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~ 65 Particle, nuclear and theoretical physicists  
from 21 Institutions:
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Interactions Studied by MINERvA

•  Can go from low to high momentum transfer to the nucleus
–  Quasi-elastic:  this is most of the events at T2K and 

MicroBooNE
–  Resonance:  backgrounds in T2K, signal in NOvA and DUNE
–  DIS:  part of the signal in the DUNE experiment, + ICECUBE
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MINERvA’s Flux in Oscillation Landscape

•  NuMI  
Beamline
–  120GeV 

 protons
–  2 focusing horns
–  675m long decay  

region
–  MINERvA on axis  

at 1km
•  MINERvA can see  

processes relevant for  
oscillation experiments 
from T2K to ICECUBE
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MINERvA:  Low Energy Flux Uncertainties

•  Use world’s collection of hadron 
production data

•  Compare with in situ flux shape 
measurement

•  Constrain with neutrino-electron 
scattering events (standard candle)

•  Low Energy Flux Uncertainty:  ~8% at 
focusing peak, 10% integrated
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MINERvA Detector
•  Core of solid scintillator (CH) tracker

–  Tracking, particle ID, good energy reconstruction
–  Cell size: 1.7cm (transverse) x1.7cm (longitudinal)

•  Surrounding electromagnetic and hadronic calorimetry
•  MINOS Near Detector for µ charge and momentum
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MINERvA’s Nuclear Target Region
•  Simultaneous targets in beam for robust test of models
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Recipie for Cross Section Measurements

•   Count events (Ndata,j) 
•  Subtract backgrounds, predict using data (Nbkgd data,j)
•  Unsmear the data (Ujα) to take out detector resolution
•  Divide by acceptance  x efficiency   (Aα)
•  Divide by flux and # of targets  (ΦT)
•  Δx:  normalize  by bin width 
•  j and α:  reconstructed and true bin number
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Events in MINERνA
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Quasi-Elastic Cross Section Ratios on Fe, Pb, C

•  Study of momentum transfer from the proton arm
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Carbon	 Iron	 Lead	

Ref:		arXiv:1705:03791	

φ:		Coplanarity	
	

180o	for	proton	at	rest	
and	2-body	interac'on	

and	no	final	state	interac'ons		

Quasi-Elastic Event Coplanarity on C, Fe, Pb 



Quasi-Elastic Cross Sections on C, Fe, Pb 

•  Just because a model gets C right  
does not mean it gets higher Z right

•  Need to get nuclear effects of  
primary interaction AND  
Final state Interactions correct
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Looking at more than just the proton…

•  Electron Scattering measurements have  
seen surprises when looking near the  
Quasi-elastic peak
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Try to get to the same kinematics in neutrino scattering

•  Variables of interest:  momentum transfer q
–  Total three-momentum transferred (q0) 
–  Total momentum along the beam direction (q3) 
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Now go to variables we can reconstruct well

•  Problem with “q0” is 
that it also depends on 
energy that goes into 
neutrons, which we 
don’t see well

•  Define new variable:  
“available energy” 
which is the energy 
that does go into our 
detector (KE of 
charged pions, 
photons, KE of 
protons, etc.) 
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Energy	Transfer:	
q0	=	Calorimetric	Hadronic	Energy	

Neutrino	Energy:			
Eν=Eµ+q0	

Momentum	Transfer	Squared:		
	Q2=2Eν(Eµ-pµcosθm)	–	M2

µ



What do the data look like? 

•  Slice the 2-d space into two 1-d distributions
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Missing ingredients

•  Weak charge screening
•  “2p2h” events to fill in the “dip” region between QE and 

resonance
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What happens when we add those two ingredients?

•  The 2p2h contribution predicted by 
Nieves is not quite enough, but close!
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Fit to neutrino data, add extra strength to “dip” region
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Fine,	but	does	this	new	model	have	any	predic've	power?	



Double Differential Neutrino CCQE Cross Sections

•  Isolate only CCQE events:  cut on extra energy outside the 
vertex, subtract backgrounds, extract cross sections
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What about Antineutrinos?  

•  Look in the same two kinematic regions:  first with “out of the 
box” prediction  Ref:  R. Gran, NuINT’07
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Antineutrino Inclusive Events at low recoil
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Ref:		R.	Gran,	NuINT’17	

•  Add the fit from neutrino data to the antineutrino prediction…



Double Differential Antineutrino CCQE Cross Sections

•  Isolate only CCQE events:  cut on extra energy outside the 
vertex, subtract backgrounds, extract cross sections
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νe	CCQE is oscillation signal, but  
almost no data.   

Measured cross 
sections and νe/νµ 

ratio consistent 
with GENIE 
model @ 1σ 
(~10-20% 

uncertainties) 
Absolute level is 

high 

Phys. Rev. Lett 
116, 081802 
(2016) 

e-	

p	
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We all assume fundamental coupling is universal, 
but know nuclear effects are not! 

Also found an unsimulated background of photon like 
events, which we believe are due to diffractive 

production of π0 from protons in scintillator.   

Electron Neutrino CCQE Cross Section

Phys.	Rev.	Le[	116,	081802	(2016).	



•  After CCQE, pion production is the 
next most common channel for 
oscillation experiments

•  Energy seen in detector depends 
on π± vs  π0 and how much energy 
pion loses leaving the nucleus

•  MINERvA measuring all 4 modes, 
both π and µ kinematics
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New precision on anti-ν/ν cross section ratio
•  Take advantage of standard candle to 

determine the shape on anti-ν/ν shape as 
a function of energy

•  Important for atmospheric ν experiment 
Mass Hierarchy measurements

•  Systematics include known model 
deficiencies in multi-nucleon effects

•  In anti-ν/ν ratio many systematics cancel
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Summary

•  MINERvA looking at many  
processes in new ways

•  Getting better understanding of role of nucleus
–  Beware of your simulation:  “out of the box” event generator is 

not nature!  
–  Putting together a new model, tuned on neutrino events that 

has predictive power on antineutrino events!  
–  By looking at 4 modes of pion production we can probe final 

state interactions 
–  Both affect the visible energy prediction for incoming ν energy
–  Better energy prediction means better oscillation measurements

•  MINERvA taking ~6GeV antineutrino data now, working on 
our 6GeV neutrino statistics to extend these results 
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Summary of MINERvA’s 21 publications
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NuMI	Flux	
Determina'on	
(a	priori,	and	from	
e-	sca[ering)	

ν
Using	Lepton	variables	only:	
νµ	and	an'-νµ	quasi-elas'c	
νe	CCQE		

µ,e	

Inclusive	“low	recoil”		
π± produc'on	by	νµ		
π0	produc'on	by	an'-νµ

Κ± produc'on	by	νµ (NC,CC) 
Coherent  π±, Κ± produc'on	
Inclusive	an'-νµ/νµ	ra'os	 
		

Ra'os	comparing	Pb,Fe,C	to	CH:	
Total	CC	cross	sec'ons	
Deep	Inelas'c	Sca[ering	
CCQE		

e,u,d,p,n,	
C,Fe,Pb	

W,Z	

See	h[p://minerva.fnal.gov	



Backup
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MINERvA’s Current Physics Program

•  Medium Energy results will 
feature 10x statistics
–  Higher flux and cross  

section, 3x more protons  
on target collected

–  Chance to look at nuclear 
effects in DIS at few % level!

•  Statistics above assume 
12x1020 POT (2+ years) in 
antineutrino exposure

–  Exclusive channel ratio  
results for Fe, Pb, C, CH

–  Better Precision on νe 
scattering measurements
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MINERvA:  Neutrino-Electron Scattering to constrain Flux
•  Neutrinos scattering off electrons: 

pure electroweak process
•  MINERvA used this channel in 

lower energy exposure to put 11% 
constraint on flux

•  Medium Energy statistics expected 
to give 5% constraint on flux in 
neutrino mode
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MINERvA:  Ratios of Inclusive CC Reactions on Nuclei

1.   At low x, deficit that increases with A 
2.   At high x, excess that increases with A 
These effects are not reproduced by current 
neutrino interaction models. 
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MINERvA is the first experiment to look for 
the “EMC Effect” in neutrino scattering 
No evidence of discrepancy with model 
(which does not include EMC effect).   

Low Energy measurement statistically limited.   

MINERvA:  DIS Cross Section Ratios, Fe and Pb to CH
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What about Antineutrinos?  

•  Look in the same two kinematic regions:  jump to where we 
have added in two new effects:  screening and 2p2h 
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NuMI Beamline

•  120GeV protons strike a C target
•  2 focusing horns
•  675m decay volume
•  Near detector hall at 1km from 

target, home of MINERvA
•  Off Axis trick used for NOvA in 

same beamline
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