Status and Results from MicroBooNE

Lorena Escudero
University of Cambridge
on behalf of the MicroBooNE collaboration

Rencontres du Vietnam
18th July 2017
MicroBooNE

Micro Booster Neutrino Experiment

Part of the short baseline neutrino (SBN) program at Fermilab

A Liquid Argon TPC

inside its cryostat at LArTF (FNAL)
MicroBooNE: a LAr TPC

8256 (3 mm pitch) sense wires in 3 planes:
- The first two planes (U and V) are induction planes with wire orientation +/-60°.
- The third plane (Y) is the collection plane with wires oriented vertically.

-70kV (nominal -128kV)

- **32(+4) PMTs** behind the wire planes to record scintillation light and provide trigger information.

Lorena Escudero, Rencontres du Vietnam
MicroBooNE data taking

Taking neutrino data since fall 2015

In terms of neutrino interactions for BNB:

~140k ν_μ CC interactions

~55k ν_μ NC interactions

Oct 2015 May 2017

$\sim 5.5e20$ POT BNB collected.

$\sim 7.6e20$ POT NuMI collected.

MicroBooNE uptime ~97% during stable operations.
First MicroBooNE neutrino events

Automated neutrino event selection

- Beam timing coincidence and optical reconstruction
- Identification of neutrino event topologies and TPC reconstruction

*Color scale indicates amount of deposited charge

“Modern bubble chamber” images

MicroBooNE public note 1002
Physics goals

Neutrino Oscillations
- Investigate MiniBooNE’s low E excess

Neutrino Interactions
- Neutrino - Ar cross section measurements
 - MicroBooNE E range
 - v-Ar cross section measurements

Supernova neutrinos and Exotic Physics

Detector Physics
- LArTPC R&D
Roadmap

Results

Energy reconstruction and energy scale calibration
Momentum reconstruction
Particle & event ID
Cosmic removal
2D & 3D event reconstruction
Noise filtering & signal processing

Data

Detector response calibration & simulation
LAr/e propagation properties

Slide from A. Schukraft
Publications

- Michel Electron Reconstruction Using Cosmic-Ray Data from the MicroBooNE LArTPC; arXiv:1704.02927
- Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering; arXiv:1703.06187
- Measurement of cosmic-ray reconstruction efficiencies in MicroBooNE using a small external cosmic-ray counter; coming soon
- Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber; arXiv:1611.05531
- The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector; coming soon
- Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC; arXiv:1705.07341
- Design and Construction of the MicroBooNE Detector; arXiv:1612.05824
Recording neutrino interactions

- Prompt scintillation light detected by the optical system and used as trigger to determine the beam spill period
- The duration of the beam spills is only a fraction of the e^- drift time (~2.3ms) and additional activity is recorded during drift time window due to cosmic rays

MicroBooNE public note 1002
Electron drift and purity

- Long time for electrons to drift from cathode to anode (~2.3 ms)
- High-purity LAr is essential for a LArTPC operation

Main electronegative contaminants: O$_2$ & H$_2$O
- Removed:
 - Gasesous purge (April 2015)
 - LAr purification (July 2015)
- Monitored:
 - Gas analyzers
 - Purity monitors (measuring drift time of e$^-$ between their cathodes and anodes)

Within 3 weeks from start of filtration, surpassed design expectation and achieved \geq 6ms e$^-$ drift lifetime, maintained since then
Front-end ASIC inherent noise reduced with operation in cold

TPC excess noise

- **Coherent noise**: induced by the low-voltage regulators
- **Harmonic noise**: induced by the cathode high-voltage power supply (appearing at odd harmonics of its ripple frequency 36kHz)
- **Burst noise** at 900kHz, source not confirmed yet (suspected PMT HV supply or interlock system power supply)

With hardware upgrades in summer 2016 (for coherent and harmonic noise) and noise-filtering, greatly improved ratio signal/noise

Important LAr R&D results!

arxiv:hep-ex/1705.07341 (submitted to JINST)
Noise filtering

Extensive work done to identify and filter out excess noise, with impressive results!

Important LAr R&D results!

arxiv:hep-ex/1705.07341
(submitted to JINST)
After noise filtering, we want to convert the raw digitized TPC waveform to the number of ionized electrons.

Example event in first induction plane

Deconvolution techniques to remove the impact of field and electronics response

Hit finding: find regions with a wire waveform above a threshold at a definite drift time, calculate deposited charge corresponding to the hits found, and input them to the pattern recognition.
Pandora pattern recognition

- Pandora provides a **multi-algorithm approach to automated pattern recognition** for LAr TPC detectors (MicroBooNE, DUNE, protoDUNE…)

- Address problem with many “small” algorithms (~120 available) and build up event gradually:
 - Each step is incremental - aim not to make mistakes (undoing mistakes is hard…)
 - Can build in some basic physics knowledge in algorithms

- Pandora provides the software infrastructure to manage algorithm chain, visualisation, etc. (PandoraSDK *Eur. Phys. J. C* 75, no. 9, 439)

Very strict assessment of pattern recognition (correctness of events)

E.g.

![Diagram showing examples of CCRES with π⁺ for different particle interactions and missing particles](image-url)

- CCRES w/ π⁺ daughter
- CCRES w/ π⁺ fragment
- CCRES w/ π⁺ split
- CCRES w/ π₀
- Very strict assessment of pattern recognition (correctness of events)
- Missing parent-daughter link: π⁺ split
- Missing γ₂

Lorena Escudero, Rencontres du Vietnam
Pandora 2D and 3D reconstruction

Pandora uses many algorithms and tools to exploit the information in the 3 (views) x 2D reconstruction (x-wire).

Example of a Pandora algorithm tool using the information in the V and W views to split a cluster in U which has accidentally merged two particles.

After features are examined and correlated in 2D, a 3D reconstruction is performed.

The final output provided consists of particles and their vertices, 2D clusters, 3D spacepoints, and their hierarchy (parent/daughter).

MicroBooNE Simulation

Track-like daughter of primary particle

Track-like primary daughter of ν_μ

Shower-like daughter of primary particle

Parent ν_μ interaction vertex

Track-like primary daughter of ν_μ
Performance studied looking at matching true-reconstructed particles for different interaction types and final state particles

Example: CCQEL $\nu_\mu \rightarrow \mu + p$

<table>
<thead>
<tr>
<th>#Matched Particles</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>1.3%</td>
<td>95.8%</td>
<td>2.9%</td>
<td>0.1%</td>
</tr>
<tr>
<td>p</td>
<td>8.9%</td>
<td>87.3%</td>
<td>3.6%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

arxiv: coming soon
Cosmic rays

Cosmic rays: the challenge of a surface detector

Run 1532, Event 1
08/17/2015, 04:03 PM

~10 cosmics/drift period

Cosmic ray (track) particles

Delta ray (shower) particles, daughters of the cosmic ray

Example of cosmic ray reconstructed by Pandora

Removing them

Main background for analyses

• Readout before and after trigger: identify cosmics crossing anode/cathode
• Identify trough-going tracks
• Check consistency between scintillation light at PMTs and position at TPC

Using them

Used as source of calibrations:

• Space charge effects
• Lifetime, diffusion, calorimetric calibration
• Michel electrons identification and energy reconstruction

Lorena Escudero, Rencontres du Vietnam
• Automated reconstruction of ~14k Michel electrons produced by decay at rest of cosmic-ray muons
• Low energy electrons (up to ~50MeV)
• Bragg peak and kink information used to identify Michel electrons
• Studied the impact of energy lost to radiative photons produced by ionisation and bremsstrahlung
New Cosmic Ray Tagger providing external cosmic ray tagging system to MicrobooNE installed and fully operational since March 2017

Composed of 73 individual modules, proving 85% coverage
• Plastic scintillator strips readout by 2 WLS fibres and SiPMs (2 xy layers)
• Custom designed electronics for digitization and triggering (now licensed to CAEN) with ~ns timing precision

Made in-house at Bern University

MDPI paper (Instruments 2017, 1, 2.)
Muon Counter Stack

A small cosmic tagger:
- installed above the TPC
- consists of 2 sets of XY scintillator strip modules
- muons tagged used to study **space charge effects** by using their reconstructed entry and exit points

Larger coverage provided by the new CRT

![Diagram of Muon Counter Stack with TPC and CRT](image)
Space charge effects

Space charge effect
• due to build-up of positive Ar ions (slow-moving)
• can impact the drift electric field
• and lead to spatial variations of the amount of recombination
• thus distorting tracks

Measuring it with
• Start/end point of reconstructed tracks in the TPC for MIPs (cosmics) tagged by the Muon Cosmic Stack in off-beam data
• Laser calibration system (UV laser) can produce a useful sample as well
• Detailed calibration is on its way!
Convolutional Neural Networks

CNNs are tools developed for image analysis, help exploiting the high quality LArTPC images. Work on-going to apply these techniques to neutrino analyses.

Studies demonstrate the potential of convolutional neural networks for particle ID and identification of neutrino interactions.

JINST 12, P03011 (2017)
Study the observed charged particle multiplicity distribution (number of reconstructed tracks from interaction vertex) compared to predictions from several GENIE models.

• Select events with a fully contained muon
• Check light associated with the muon track coincident with beam spill
• Directionality checks to reject cosmics

Proves the ability to resolve and fully reconstruct events with multiple tracks from a common neutrino vertex.

MicroBooNE public note 1024
Muon momentum with MCS

Multiple Coulomb Scattering used for momentum estimation

- Contained and exiting muons
- Analyze deflection angular scattering
- Likelihood-based method
- Tuning of the Highland formula for LArTPCs

arxiv:hep-ex/1703.06187

Selected, Well Reconstructed Tracks from ν_eCC Data

MicroBooNE Data

Simulated Exiting ν_eCC Muon Tracks

MicroBooNE Simulation

contained μs

exiting μs
Other MicroBooNE analyses

ν_μ CC inclusive cross section

Proton identification in NC elastic events

MicroBooNE public note 1025

Exotic physics
SuperNova NuMI Physics

Find more in:
MicroBooNE public notes
MicroBooNE LArTPC is up and running, collecting and analyzing neutrino interactions

Since it started collecting data in fall 2015:
• 5.5E20 BNB POT has been collected
• Extensive work on validating the performance of our detector has been carried out
• First ν-Ar interaction cross section measurements are ongoing

More exciting results towards determining the origin of MiniBooNE’s low energy excess and more are on their way, so stay tuned to MicroBooNE
Thanks!

~170 collaborators from 30 institutions

> 50% postdocs and students

and ~30% women!