

Latest oscillation results from T2K

Simon Bienstock (on behalf of the T2K Collaboration) LPNHE Paris

simon.bienstock@lpnhe.in2p3.fr

Rencontres du Vietnam 2017 18/07/2017

Neutrino oscillations

Neutrino can change flavour while propagating

- This mechanism can be described by 6 parameters :
 - → 3 mixing angles, $\theta_{12} \theta_{13}$ and θ_{23} and 2 Δm_{13}^2
 - A CP violating phase : δ_{CP}

$$P(\nu_x \to \nu_y) = \sin^2(2\theta)\sin^2(1.27\Delta m^2)\frac{L(km)}{E(GeV)})$$

$$P(\nu_x \to \nu_y) = \sin^2(2\theta)\sin^2(1.27\Delta m^2) \frac{L(km)}{E(GeV)})$$

Three neutrino mixing

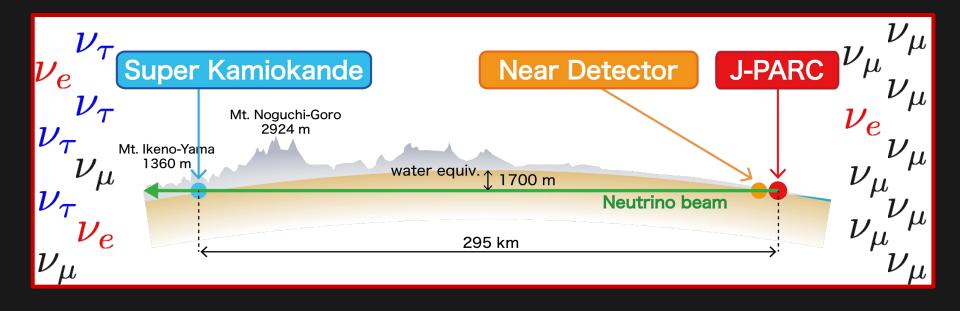
$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
Flavour
Solar and reactor
Reactor and accelerator
Atmospheric and
Mass of the sector and accelerator

2

(+ Majorana phases)

Neutrino oscillations

- ➤ This mechanism can be described by 6 parameters :
 - → 3 mixing angles, $\theta_{12} \theta_{13}$ and θ_{23} and 2 Δm_{11}^2
 - → A CP violating phase : δ_{CP}


(+ Majorana phases)

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
Flavour Solar and reactor Reactor and accelerator
$$\begin{array}{c} \mathbf{Atmospheric and} \\ \mathbf{accelerator} \\ \theta_{12} = (33.6 \pm 0.8)^{\circ} \\ |\Delta m_{12}^{2}| = (7.50 \pm 0.18) \cdot 10^{-5} \, eV^{2} \\ \theta_{13} = (8.5 \pm 0.15)^{\circ} \\ \delta_{CP} \approx -90^{\circ} \, slightly \, favored \end{array}$$

Tokai to Kamioka

JZ/K is a long-baseline neutrino oscillation experiment

- Av_{μ} beam, peaked at ~600 MeV is produced at J-PARC (Tokai, Japan)
- ➤ The neutrinos are then detected in the near detector ND280, and in the far detector, 295 km away, Super-Kamiokande (Kamioka).

T2K physics goals

$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

➤ Two main initial goals :

- ➡ Precise measurement of v_µ disappearance :
 → Atmospheric sector, measurement of θ₂₂ and Δm²₂₂
- → Observation of v_e appearance in the v_{μ} beam : → Access to the interference parameter θ_{13}
- ► Now taking data with anti-neutrino \Rightarrow combined v_e and \bar{v}_e appearance :
 - \rightarrow First constraints of $\delta_{\rm CP}$

Oscillation probability

v_" disappearance probability

→ In T2K, given the energy of the neutrino, we can simplify the formula to :

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \sim 1 - \left(\cos^{4}\theta_{13} \cdot \sin^{2}2\theta_{23} + \sin^{2}2\theta_{13} \cdot \sin^{2}\theta_{23}\right) \times \sin^{2}\frac{\Delta m_{31}^{2} \cdot L}{4E}$$

Leading term Next-to-leading Can be used to resolve octant
• **v**_**appearance probability**
• Around T2K's oscillation maximum :

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right)\left(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2\sin^{2}\theta_{13})\right)$$
Leading including matter

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right)\left(1 + \frac{2a}{\Delta m_{31}^{2}}\right) \sin\left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right)$$
(P violating

$$-\sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\cos \theta_{13}\sin \delta \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right)\sin\left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right)$$
(P violating

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23}\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\theta_{13}\sin^{2}\theta_{13}\sin^{2}\theta_{13}\right)$$
(P violating

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23}\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\theta_{13}\sin^{2}\theta_{13}\sin^{2}\theta_{13}\right)$$
(P violating

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23}\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\theta_{13}\sin^{2}\theta_{13}\right)$$
(P violating

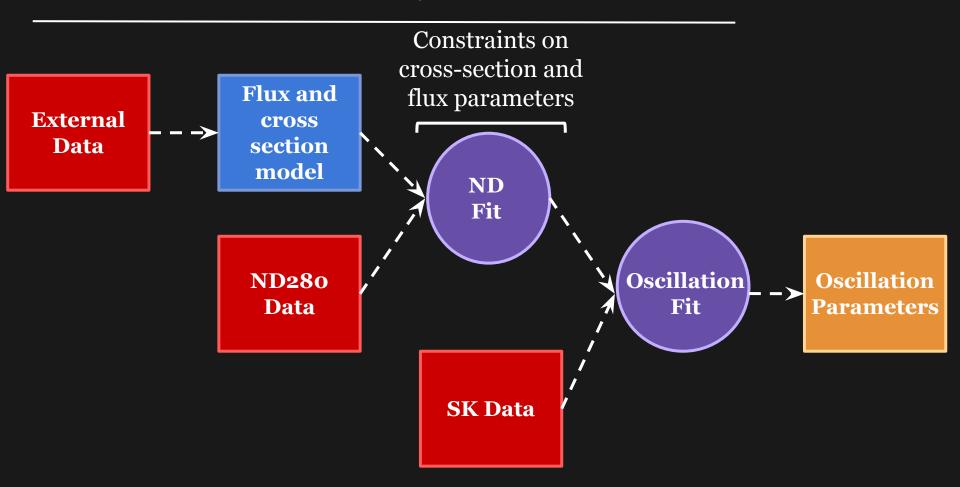
$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23}\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\theta_{13}\right)$$
(P violating

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{13}\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\theta_{13}\right)$$
(P violating

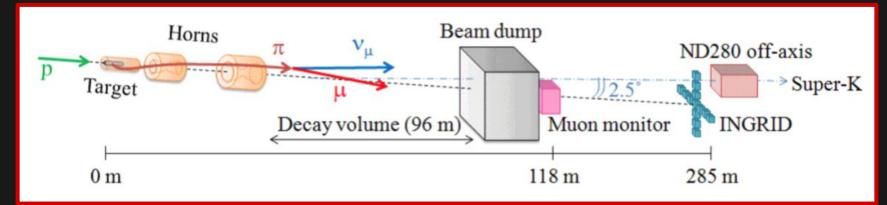
$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\theta_{13}\right)$$
(P violating

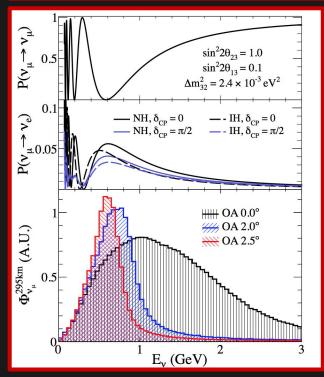
$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\theta_{13}\right)$$
(P violating

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \theta_{13}\cos^{2}\theta_{13}\cos^{2}\theta_{13}$$
(P violating


$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \theta_{13}\cos^{2}\theta_{13}\cos^{2}\theta_{13}$$
(P violating

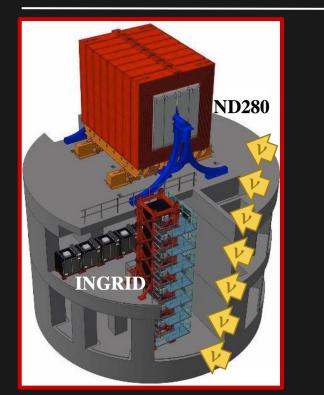
$$P(\nu_{\mu} \rightarrow \theta_{13}\cos^{2}\theta_{1$$

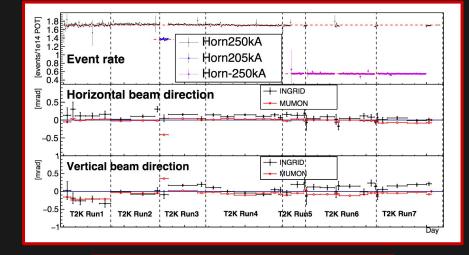

T2K oscillation analysis chain



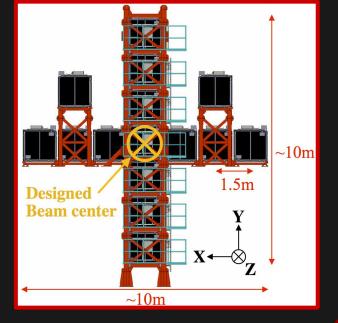
We do a first fit with the near detector data in order to constrain our flux and cross-section models, to have a precise prediction of the number of events we expect at the far detector.

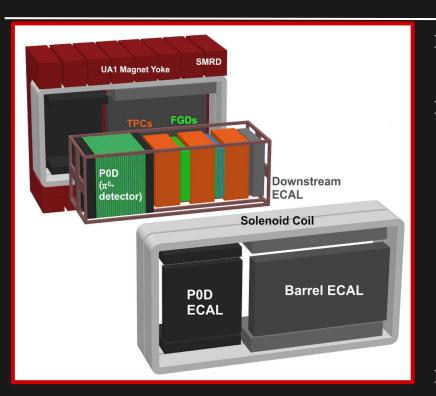
T2K beam





- First use of off-axis v_{μ} beam to get a beam more peaked in energy.
 - ➡ The energy is peaked around oscillation maximum (0.6 GeV).
- The pion and kaon production at target is constrained by the NA61/SHINE experiment at CERN, allowing us to reduce systematic uncertainties on the flux of neutrino.
- An anti-neutrino beam can be obtained by reversing current in the magnetic horns.

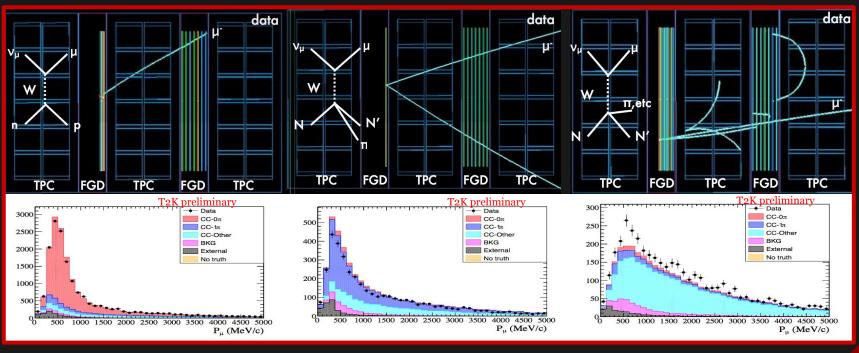

T2K near detector : INGRID


• Near detector pit at 280 m from the target

- INGRID is located on-axis.
 - iron/scintillator tracking calorimeters (16 modules)
 - → Monitor beam, direction, stability.
 - \rightarrow Used to constrain flux systematic errors.

T2K near detector : ND280

- ND280 is located 2.5° off-axis (same as Super-K).
- Several sub-detectors inside the magnet
 - ➡ Fine Grained Detector (FGD), plastic scintillator bars for FGD1 and scintillator/water for FGD2 as target.
 - ➡ Time Projection Chamber (TPC) to reconstruct momentum and charge.
 - ➡ Pi0 detector (P0D) and
 Electromagnetic calorimeter (ECal).
- Measure neutrino spectrum and composition before oscillations.


$$N_{ND} = \int dE \ \Phi(E) \times \sigma(E) \times \epsilon_{ND}(E)$$
of events
Flux Cross-section Detector efficiency
In common with the fer detector

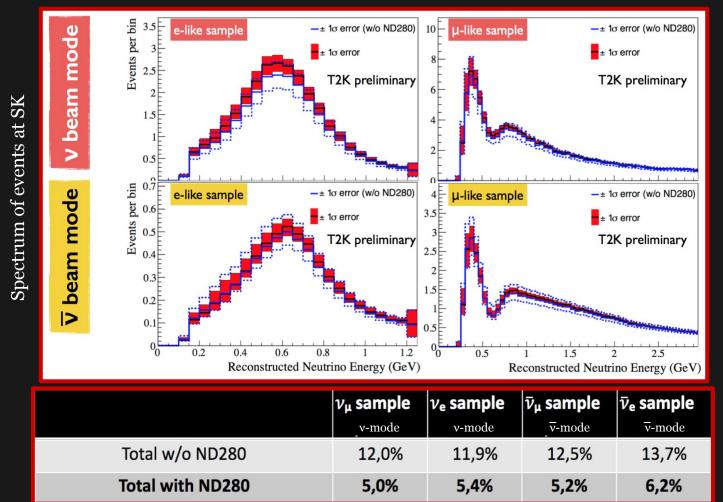
In common with the far detector

T2K near detector in the oscillation analysis

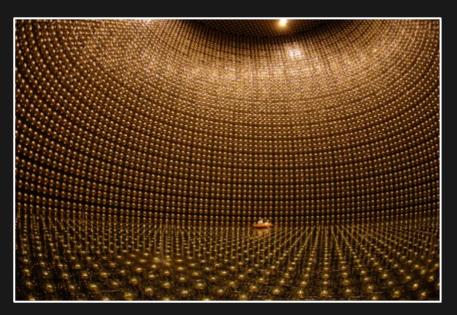
- > Select charged-current (CC) muon neutrino interactions in the tracker.
 - → The FGDs are used as targets.
 - → With the TPCs, retrieve the momentum and charge of the tracks produced.
- Constrain flux and cross-section models with the momentum and angle of the muon produced by the CC interaction.

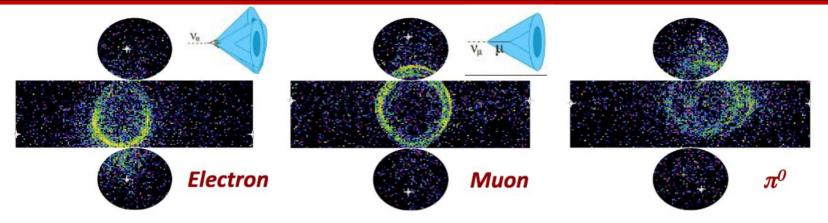
Quasi-elastic candidate

Single pion candidate

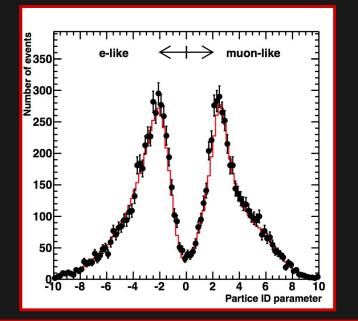

DIS candidate

T2K near detector in the oscillation analysis

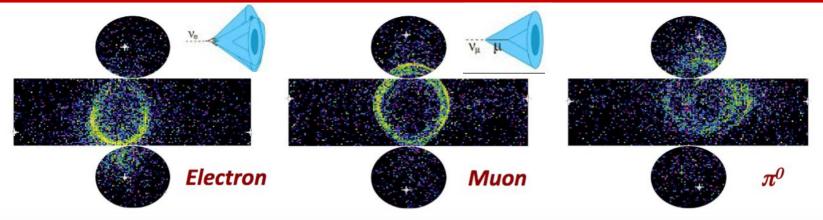

ND280 helps to reduce the systematic uncertainties in the oscillation analysis from ~14% to ~6%



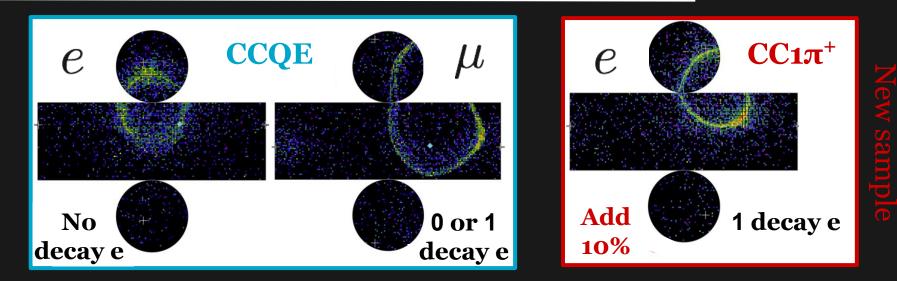
The far detector : Super-Kamiokande

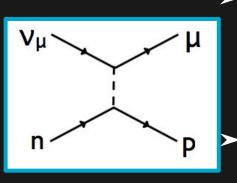

Cherenkov detector with 50 kT of water.

- > Detect neutrino CC interactions
- Excellent muon/electron separation thanks to the shape of the Cherenkov ring.
- Only 1% of muons are misidentified as electrons.

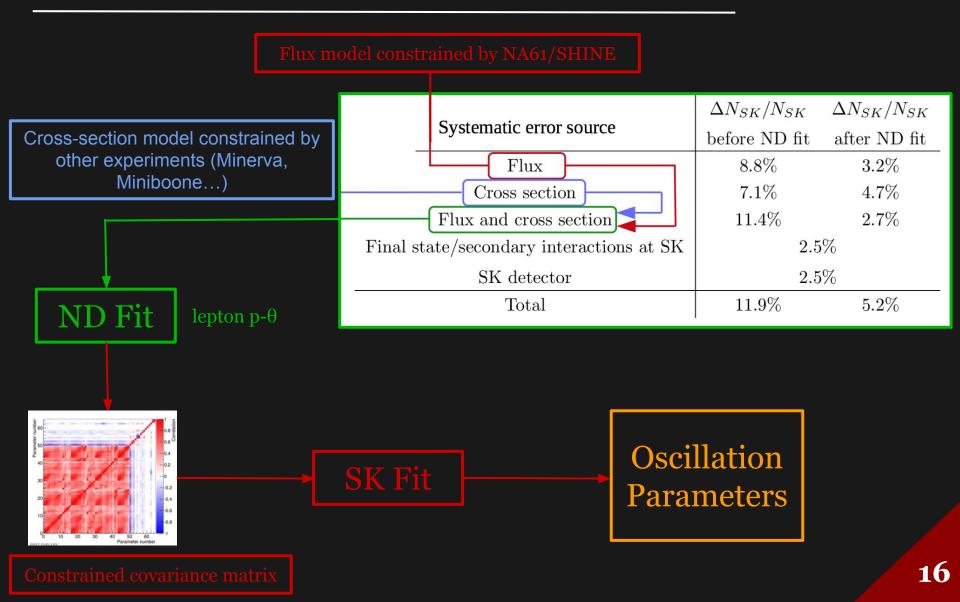


The far detector : Super-Kamiokande


Cherenkov detector with 50 kT of water.


- Detect neutrino CC interactions
- Excellent muon/electron separation thanks to the shape of the Cherenkov ring.
- Only 1% of muons are misidentified as electrons.

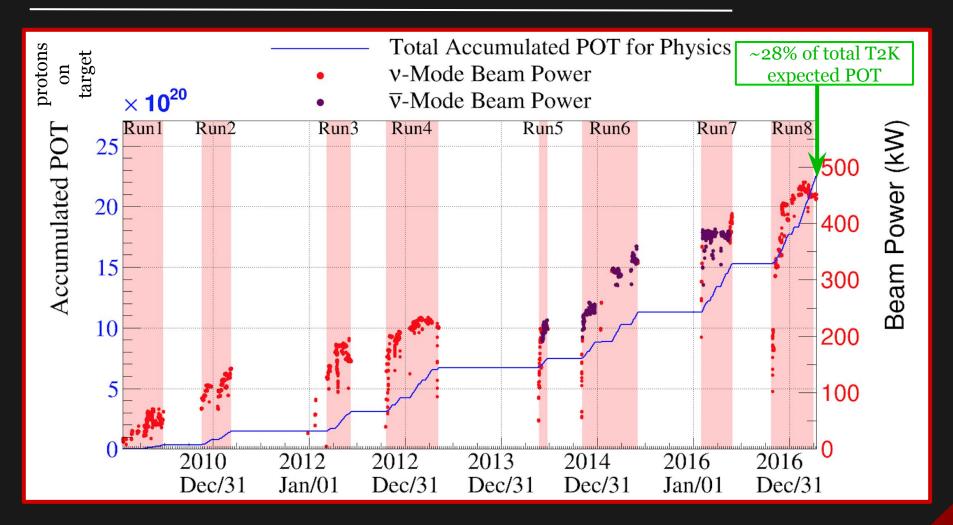
Five far detector samples


- One reconstructed ring electron and muon samples for both neutrino and anti-neutrino.
 - → Mainly CC quasi-elastic events.
- Added during winter 2016 a new sample with 1 electron ring and 1 decay electron which add ~10% of events.
 - ➡ Mainly single pion production from electron neutrino.

T2K oscillation analysis

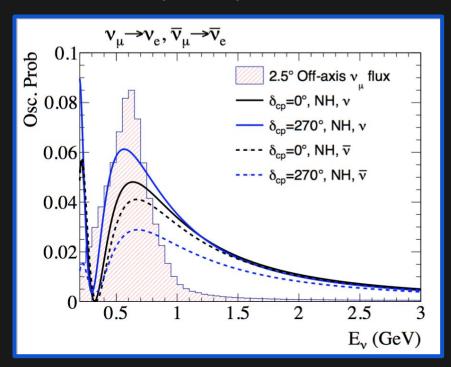
The far detector fit

$$N_{SK} = \int dE \ \Phi(E) \times \sigma(E) \times \epsilon_{SK}(E) \times P(\nu_{\alpha} \to \nu_{\beta}, E, \theta_{ij}, \Delta m_{ij}^2, \delta_{CP})$$
of events Flux Cross section Detector Oscillation probability
Constrained with the near detector

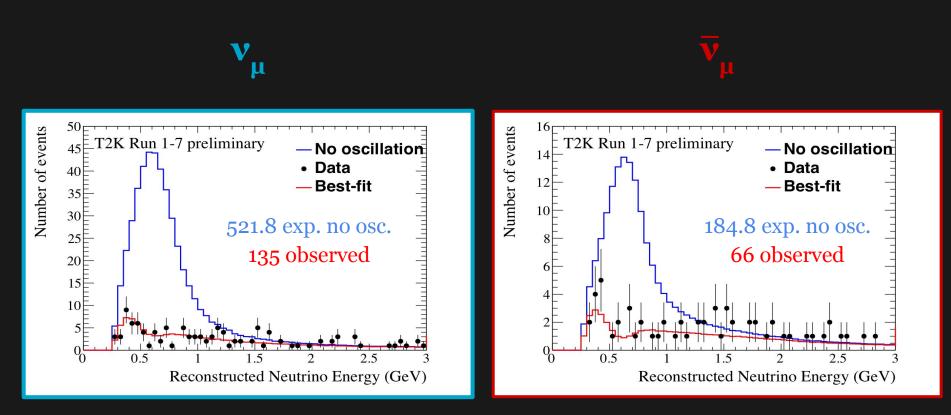

Three different analyses performed to extract the oscillation parameters :

- > A frequentist analysis with a $\Delta \chi^2$ fit to
 - E_{rec} / θ_{lep} for electron neutrino and anti-neutrino.
 - E_{rec} for muon neutrino and anti-neutrino.
- ► A Bayesian analysis with a likelihood fit to
 - \Rightarrow p_{lep} / θ_{lep} for electron neutrino and anti-neutrino.
 - E_{rec}^{rep} for muon neutrino and anti-neutrino.
- ► A Bayesian with a Markov-Chain MC
 - \rightarrow E_{rec} for all samples.
 - → Simultaneously fitting the near detector data.

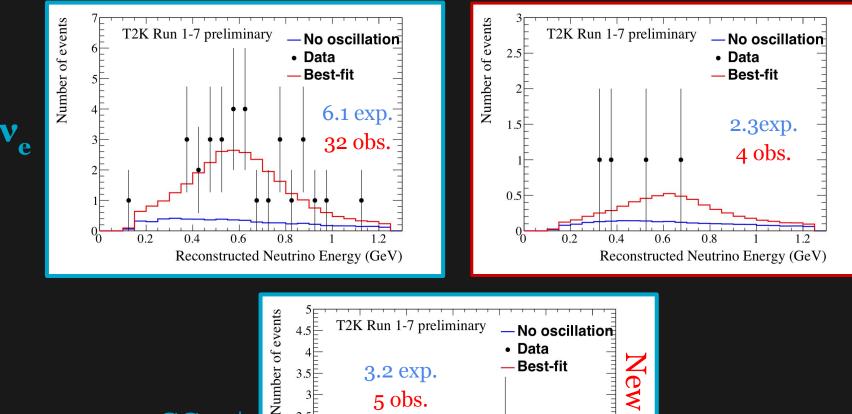
Data taking

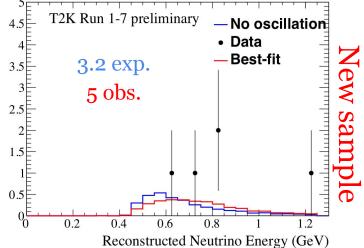


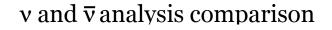
Now running at an impressive 470 kW !

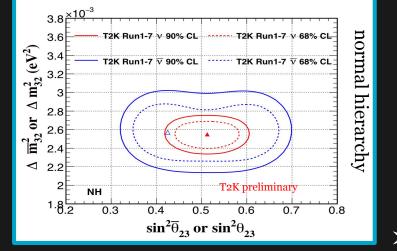

Joint neutrino and anti-neutrino mode analysis

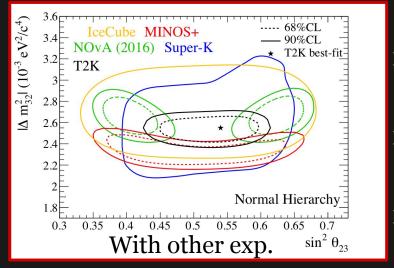
- ➤ The five SK samples presented earlier are used in the analysis, allowing simultaneous study of the v_e / \overline{v}_e appearance channels, and v_μ / \overline{v}_μ disappearance channels.
- > Why is anti-neutrino mode data important ?
 - → The difference between v_e and \overline{v}_e appearance is directly related to δ_{CP}

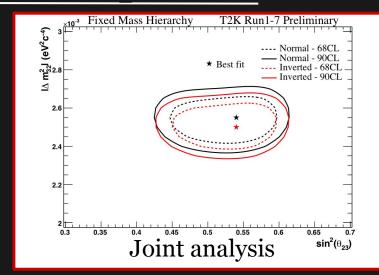

v_{μ} and \overline{v}_{μ} disappearance


Reconstructed neutrino energy at the far detector for v_{μ} and \bar{v}_{μ} candidate samples with the expected distribution in the no-oscillations hypothesis (blue) and the best-fit (red).

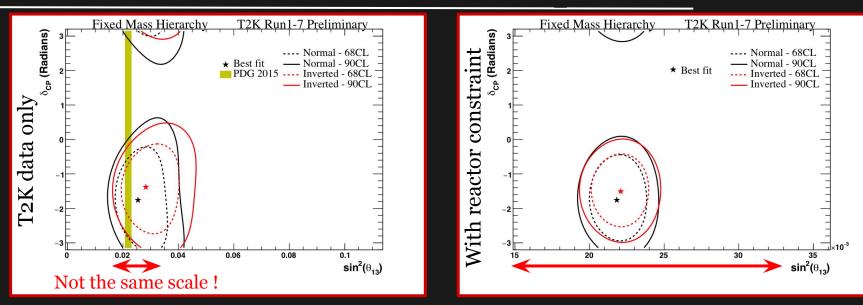

v_e and \overline{v}_e appearance



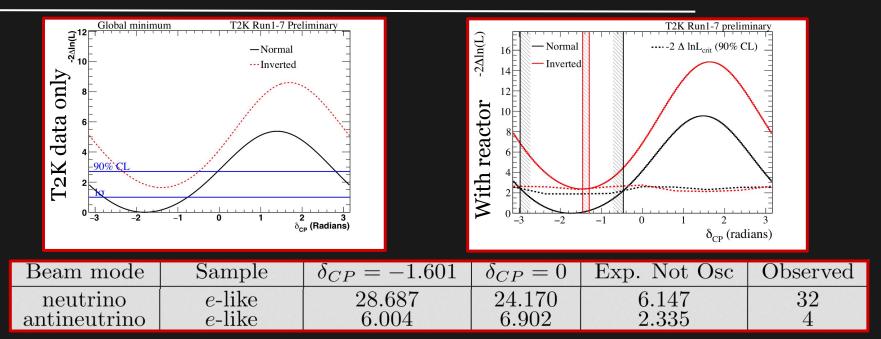

 $v_e CC1\pi^+$



Confidence region in the $\sin^2 \theta_{23} |\Delta m^2_{32}|$ plane



- T2K results are consistent with past analysis results, maximal mixing (45°).
- It's also in agreement with other experiments.
- Weakly prefers second octant with posterior probability of 61%.
 - From separated v and \overline{v} analysis comparison, no hint of CPT violation.


Confidence region in the $\sin^2\theta_{13}$ / $\delta_{\rm CP}$ plane

- ► With the anti-neutrino samples, T2K data by itself has already some sensitivity to δ_{CP} !
 - → Disfavor region around $\delta_{CP} = +\pi/2$.
 - → Preference for the $\delta_{CP} = -\pi/2$ region for both normal and inverted hierarchy.
- > Good agreement between the reactor measurement of θ_{13} and T2K results.
- > When adding the reactor constraint (PDG2015 : $\theta_{13} = 0.085 \pm 0.005$) the contour is further reduced.

First hints about $\delta_{\rm CP}$

Confidence intervals are obtained through the Feldman-Cousins method. All the parameters are marginalized and θ_{13} is marginalized using reactor value. Parameter Reactors Normal Hierarchy Inverted Hierarchy

YES

-2.978; -0.467]

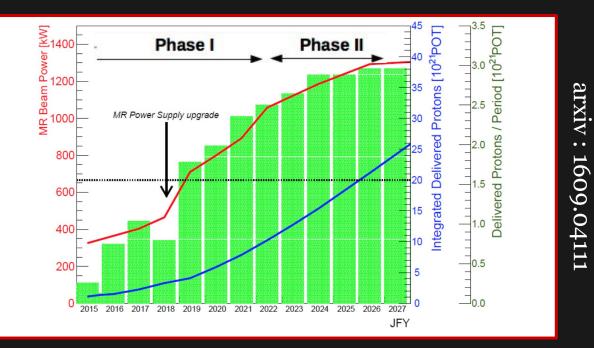
- ➤ We observe :
 - \rightarrow Less \overline{v}_{e} candidates than expected

 δ_{CP} (radians)

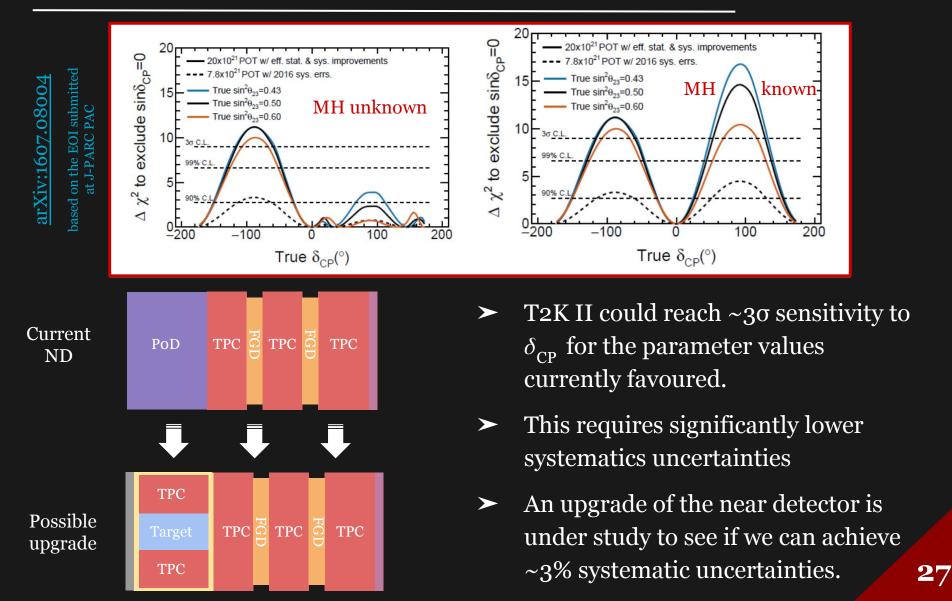
- \rightarrow More v_e candidates
- > $\delta_{CP} = -\pi/2$ is the most asymmetric value, and is therefore favored.
 - CP conservation excluded at 90% confidence level ($\delta_{CP} \neq 0, \pi$)

-1.466; -1.272

Future improvements


Coming soon : a new analysis with different improvements !

- ➡ Doubled neutrino-mode statistics.
- More accurate neutrino interaction model, and new near detector fit for more precise measurement.
- → New SK reconstruction with larger fiducial volume. Expect 20% more events in v_{ρ} appearance samples.
- Also working on different longer term improvements :
 - → Reduced flux uncertainties thanks to new NA61/SHINE analysis.
 - ➡ Improved selections in the Near Detector (anti-neutrino and improved angular acceptance).
 - ➡ SK 2-rings samples.



- ► T2K approved statistics (7.8 x 10^{21} POT) is expected to be reached in ~2021.
- ► 1st phase of J-PARC Main Ring improvement should begin in 2018.
 - ➡ T2K II would extend T2K run to 20 x 10²¹ POT in ~ 2026 (expected start of Hyper-K).
 - → This requires both an accelerator and beamline upgrade to reach 1.3 MW and analysis improvements.

T2K II sensitivity and near detector upgrade

Summary

- > Presented an overview of the latest T2K oscillation results :
 - → Precise contour in the $\sin^2\theta_{23} / \Delta m_{23}^2$ plane, in very good agreement with the other experiments.
 - ➡ First search of CP violation with neutrino and anti-neutrino data !
 - Good agreement between T2K and the reactor measurements for $\sin^2 \theta_{13}$.
 - CP conservation hypothesis excluded at 90% CL.
 - The new SK sample gives stronger δ_{CP} constraint
 - ▷ δ_{CP} (rad) = [-2.978, -0.467] for NH , [-1.466, -1.272] for IH at 90% CL.
- Soon to come (this summer) some new results with several improvements in the analysis and twice the neutrino data. Stay tuned !
- ➤ T2K also makes impressive cross-section measurements (talk from Lukas) !
- > 7.8 x 10^{21} POT expected to be reached in ~2021.
 - Proposal for extending T2K data-taking period to 2026 and accumulate up to 20 x 10²¹ POT to continue doing nice physics !
 - → Planning an upgrade of the near detector around 2020 to further reduce the systematic uncertainties.
 - ➡ If interested, come and join the T2K II effort !