Atmospheric neutrinos with Super-Kamiokande

S.Mine (University of California, Irvine) for Super-Kamiokande collaboration

artist's impression of a cosmic ray interacting with the Earth's atmosphere. Jamie Yang

Neutrino oscillation

Three-neutrino mixing paradigm based on PMNS matrix

• 3 mixing angles, 2 mass splittings, 1 CP violating phase

• Remain unknown parameters

- CP violation phase?
 - imbalance between matter and antimatter might be developed due to CPV on vs
- Mass hierarchy?
 - unification of forces
 - determine whether neutrino is Majorana

http://www.hyper-k.org/en/physics/phys-hierarchy.html

See Carlo and Asaka-san's talks for detail

Atm.-v oscillation analysis

- Sensitive to unknown parameters of PMNS formalism
 - presence of neutrinos and antineutrinos
 - effects of matter
 - wide variety of energies and pathlengths
- Measurement of mass hierarchy
 - upward-going excess of either v_e (NH) or anti- v_e (IH) by θ_{13} -induced matter effects between 2 and 10 GeV
 - determining mass hierarchy and θ_{23} play important role to establish CPV
- This talk: (paper in preparation)
 - three-flavor v oscillation analysis
 with external constraints
 - tau neutrino appearance
 - on-going studies for oscillation analyses

(for IH, matter effects appear in anti-v)

Super-Kamiokande (SK)

Nucl. Instr.&Meth, A 737C(2014)

Phase		SK-I	SK-II	SK-III	SK-IV		
Period	start	1996 Apr.	2002 Oct.	2006 Jul.	2008 Sep.		
	end	2001 Jul.	2005 Oct.	2008 Sep.	(running)		
Number	ID	11146	5182	11129	11129		
of	(photo-cove	rage) <mark>(40%)</mark>	(<u>19%)</u>	(40%)	(40%)		
PMTs	OD	1885					
Anti-implosion		no	Ves	Ves	Ves		
container		по	yes	yes	yes		
OD segmentation		no	no	ves	Ves		
-		по	110	yes	yes		
Front-end			OBEE				
electronics			VDEE				

ullet

SK total ~ 20 years

SK collaboration

- ~160 people
- ~40 institutes
- Japan, U.S., Korea, China, Poland, Spain, Canada, U.K., Italy, France

Atmospheric neutrinos

- Cosmic rays strike air nuclei and decay of hadrons gives vs
- vs travel length: 10-10,000km
- vs energy: 100MeV-10TeV
- Both vs and anti-vs

excellent tool for broad studies of neutrino oscillations

Neutrino true-energy for each subsample

July 18th, 2017

Measured energy spectra of atm.-v by SK

Phys. Rev. D94, 052001 (2016)

Measured azimuthal distributions of atm.-v by SK

Phys. Rev. D94, 052001 (2016)

July 18th, 2017

PMT gain time variation in SK-IV

PMT production dependence implemented in event reconstruction in SK-IV

Momentum time variation in SK-IV

(bands: T2K v beam) momentum/range (MeV/c/cm) 2.4 cosmic ray stopping muons 2.35 +1% -1% 2.3 2.25 01/01/09 01/01/10 01/01/11 01/01/12 01/01/13 01/01/14 01/01/15 01/01/16 date momentum (MeV/c) **Michel electrons** 39 +1% -1% 37 01/01/09 01/01/12 01/01/10 01/01/11 01/01/13 01/01/14 01/01/15 01/01/16 date

• RMS/Mean: 0.36%

Momentum directional dependence in SK-IV

largest deviation: 0.49%

Energy scale error (unit: %)

	SK-I	SK-II	SK-III	SK-IV
Absolute scale	3.13	2.70	1.62	2.08
Time variation	0.90	0.56	1.81	0.36
Total	3.26	2.76	2.42	2.11
	SK-I	SK-II	SK-III	SK-IV
Directional dependence	0.6	0.6	1.3	0.49

• Improved in SK-IV thanks to new PMT gain correction

Atm.-v event rate

Zenith angle and momentum distributions SK I-IV

July 18th, 2017

S.Mine(UCI) @ Neutrinos, QUY NHON 2017

Up (cosθ<-0.4) to Down (cosθ>0.4) ratio

Constraints on v oscillation parameters $(\sin^2\theta_{13}=0.219)$ SK I-IV

SK Preliminary 20 Normal Hierarchy Inverted Hierarchy 15 15 15 $\Delta \chi^2$ $\Delta \chi^2$ $\Delta \chi^2$ 10 10 10 99% 5 5 5 95% 95% 90% 90% 68% 01_____ 0.2 0.4 0.001 0.002 0.003 0.004 0.005 0.6 0.8 2 $\sin^2 \theta_{23}$ δ_{cp} $|\Delta m_{32}^2|, |\Delta m_{13}^2| eV^2$

- $\Delta \chi^2 = \chi^2_{\rm NH} \chi^2_{\rm IH} = -4.3$
- Under IH hypothesis, probability to obtain $\Delta \chi^2$ of -4.3 or less is 3.1%(sin² θ_{23} =0.6) and 0.7%(sin² θ_{23} =0.4). Under NH hypothesis, probability is 45%(sin² θ_{23} =0.6)

Constraints on v oscillation parameters ($sin^2\theta_{13}$ =0.219 and combined fit of SK and T2K) SK I-IV

SK Preliminary

- SK has used *publicly available* information to model and fit T2K experiment* together with atmospheric neutrinos
 *6.57x10²⁰pot(v)
- $\Delta \chi^2 = \chi^2_{NH} \chi^2_{IH} = -5.2$
- Under IH hypothesis, probability is 2.4%($\sin^2\theta_{23}=0.6$) and 0.1%($\sin^2\theta_{23}=0.4$). Under NH hypothesis, probability is 43%($\sin^2\theta_{23}=0.6$)

Measurement of atm.- v_{τ} appearance

- Direct detection of $v_{\tau}s$ for confirmation of three-flavor oscillations
- Energy thre. for CC v_{τ} int.: 3.5GeV
- Not possible to directly detect τs due to short life time
- Difficult to distinguish multi-ring BKG events (multi- π /DIS) from τ signal
- We apply multivariate method to statistically identify CC v_{τ} events. Inputs:
 - visible energy
 - # Michel electrons
 - etc.

τ decay modes

Decay mode	Branching ratio (%)		
$e^- \bar{\nu}_e \nu_{\tau}$	17.83		
$\mu^- ar{ u}_\mu u_ au$	17.41		
$\pi^- \nu_{\tau}$	10.83		
$\pi^{-}\pi^{0} u_{ au}$	25.52		
$3\pi\nu_{ au}$	18.29		
others	10.12		

CC v_{τ} event (MC)

$Data = PDF_{BG} + \alpha \times PDF_{tau} + \sum \epsilon_i \times PDF_i$

$\alpha = 1.47 \pm 0.32$ (stat.+syst.)

SK I-IV: 5,326d (SK-IV: 2,520d)

• suppressing τ background would improve hierarchy measurement

Measured fluxed averaged CC ν_{τ} cross section

• $(0.94 \pm 0.20) \times 10^{-38} \text{ cm}^2$ for v energy at 3.5-70GeV

Comparison with DONUT

DONUT results converted to differential cross section and weighted by SK flux

- SK result is larger than DONUT because of difference in v energies
 - DONUT measured DIS cross section
 - CCQE & CC coherent production contribute to SK

Neutron tag in SK-IV

 $\begin{array}{c} \alpha + {}^{9}\text{Be} \rightarrow {}^{12}\text{C}^{*} + n \\ \\ {}^{12}\text{C}^{*} \rightarrow {}^{12}\text{C} + \gamma \ (4.43 \text{ MeV}) \end{array}$

 $\alpha + {}^{9}\text{Be} \rightarrow {}^{12}\text{C} + n$

- Atm.-v interactions frequently accompanied by n production
- $n + p \rightarrow d + \gamma(2.2 MeV)$
- γ hit search enabled by QBEE
 signal ε: 20.5% (~80% with Gd)
- Already implemented in nucleon decay searches
 - ex.) ~50% BKG rejection for $p \rightarrow e \pi^0$ search
- Studies on-going to improve sensitivities on v oscillation analyses with n-tag

SK Preliminary

 $v_{\mu}/\overline{v_{\mu}}$ separation (on-going study)

Atm.-v MC (SK-IV)

(N50: #hits in 50ns sliding window. NOT momentum)

NH - IH

July 18th, 2017

Michel electrons from cosmic ray muons

SK Preliminary

Summary

Atmospheric neutrino oscillation analyses
– weakly favoring normal hierarchy
• χ²(NH)-χ²(IH)=-4.3(SK,θ₁₃ fix), -5.2(SK+T2K,θ₁₃ fix)
– tau neutrino appearance: significance of signal 4.6σ
• Cc ν_x cross section: (0.94±0.20) × 10⁻³⁸cm² at 3.5-70GeV

Prospects

- updated constraints from T2K
- neutron tag
- incorporate tau likelihood
- μ^+/μ^- likelihood
- other analysis improvements

July 18th, 2017

(C) 東京大学宇宙線研究所 神岡宇宙素粒子研究施設