



# Status and Prospects of JUNO

Wenqiang Gu Shanghai Jiao Tong University On behalf of the JUNO collaboration



- Experimental Goal
- JUNO sensitivity on Mass Hierarchy
- Experimental Progress
- Other Scientific Potential

**Jiangmen Underground Neutrino Observatory** Neutrino Physics and Exp. Goal

#### Six independent parameters give the behaviors of neutrino oscillations:

Atmospheric, accelerator

 $\left| \boldsymbol{v}_{\alpha} \right\rangle = \sum_{i=1}^{n} U_{\alpha i} \left| \boldsymbol{v}_{i} \right\rangle$ 

$$\mathbf{U}_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

 $\begin{array}{cccc} 13 & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ i\delta \end{array} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ \end{array}$ 

Solar, reactor L~60km

#### **Current best estimations:**

[F. Capozzi et al., arXiv: 1703.04471]

|                         | Best                   | t Fit                  |                          |  |
|-------------------------|------------------------|------------------------|--------------------------|--|
|                         | NO                     | Ю                      | Global 1 0               |  |
| $\Delta m^2_{21}(eV^2)$ | 7.37 ×                 | 10 <sup>-5</sup>       | ~ 2.3 %                  |  |
| $\Delta m^2 (eV^2)$     | $2.525 \times 10^{-3}$ | $2.505 \times 10^{-3}$ | ~ 1.6 %, sign is unknown |  |
| $sin^2 \theta_{12}$     | $2.97 \times 10^{-1}$  |                        | ~ 4-6%                   |  |
| $sin^2 \theta_{13}$     | $2.15 \times 10^{-2}$  | $2.16 \times 10^{-2}$  | 4%                       |  |
| $sin^2 \theta_{23}$     | $4.25\times10^{-1}$    | $5.89 \times 10^{-1}$  | octant is unknown        |  |
| $\delta/\pi$            | 1.38                   | 1.31                   | ~ 50%                    |  |
|                         |                        |                        |                          |  |



 $\Delta m^2 = \left| m_3^2 - (m_1^2 + m_2^2)/2 \right|$ 

Jiangmen Underground Neutrino Observatory

## 2<sup>nd</sup> Goal: Precision measurement of mass and mixing



[F. Capozzi et al., arXiv: 1703.04471]

|                           | Best Fit               |                        |                          |     |
|---------------------------|------------------------|------------------------|--------------------------|-----|
|                           | NO                     | IO                     | Giobal 1 0               |     |
| $\Delta m^2_{21}  (eV^2)$ | 7.37 ×                 | 10 <sup>-5</sup>       | ~ 2.3 %                  | <1% |
| $\Delta m^2 (eV^2)$       | $2.525 \times 10^{-3}$ | $2.505 \times 10^{-3}$ | ~ 1.6 %, sign is unknown |     |
| $sin^2 \theta_{12}$       | 2.97 ×                 | 10 <sup>-1</sup>       | ~ 4-6%                   | <1% |
| $sin^2 	heta_{13}$        | $2.15 \times 10^{-2}$  | $2.16 \times 10^{-2}$  | 4%                       |     |
| $sin^2 \theta_{23}$       | $4.25\times10^{-1}$    | $5.89 \times 10^{-1}$  | octant is unknown        |     |
| $\delta/\pi$              | 1.38                   | 1.31                   | ~ 50%                    |     |



The determination of the mass hierarchy relies on the identification on the positron spectrum of the "imprinting" of the anti- $v_e$  survival probability



- Prompt signal: annihilation process
- Delayed signal: neutron capture
- Prompt + Delayed coincidence provides distinctive signature

# JUNO sensitivity on MH

| PRD 88, 013008 (2013) | <b>Relative Meas.</b> | w/ absolute $\Delta m^2$ |  |
|-----------------------|-----------------------|--------------------------|--|
| Statistics only       | 4σ                    | 5σ                       |  |
| <b>Realistic case</b> | 3σ                    | 4σ                       |  |

JUNO MH sensitivity with 6 years' data



|                      | Ideal   | Core distr. | DYB & HZ | Shape | B/S (stat.) | B/S (shape) | $ \Delta m^2_{\mu\mu} $ |
|----------------------|---------|-------------|----------|-------|-------------|-------------|-------------------------|
| Size                 | 52.5 km | Real        | Real     | 1%    | 6.3%        | 0.4%        | 1%                      |
| $\Delta \chi^2_{MH}$ | 16      | - 3         | -1.7     | - 1   | - 0.6       | - 0.1       | + (4-12)                |



#### To achieve:

- Baseline optimization:  $53 \pm 0.5 km$
- $\succ$  Excellent energy resolution:  $3\%/\sqrt{E}$  [MeV]

#### We should have

- Powerful source: 10 nuclear reactors (26.6 GWth in 2020, later 35.7 GWth)
- $\checkmark$  Ideal baseline: ~52.5 km (distance between target and reactor core)
- **Shielding**: 700 m underground  $\rightarrow$  Muon event rate: ~3 /sec  $\checkmark$
- ✓ Huge target mass:

Single 20 kt LS detector  $\sim 10^5$  events in 6 years detected via IBD

- ✓ Superb energy resolution: 3%@1 MeV
  - High-yield scintillator
  - 75% photo coverage
- ✓ Systematics suppression:
  - Unique combination of two sets of PMTs: 17k 20-inch PMTs + 25k 3-inch PMTs



- Civil construction for underground site started early 2015
- Powerful source: 10 nuclear reactors (26.6 GWth in 2020, later 35.7 GWth)
- ✓ Ideal baseline: 52.5 km
- ✓ Shielding: 700 m underground  $\rightarrow$  Muon event rate: ~3 /sec



## Jiangmen Underground Neutrino Observatory JUNO Collaboration

#### 71 institutions, 571 collaborators

| Armenia | Yerevan Physics Institute      | C  |
|---------|--------------------------------|----|
| Belgium | Université libre de Bruxelles  | C  |
| Brazil  | PUC                            | C  |
| Brazil  | UEL                            | C  |
| Chile   | PCUC                           | C  |
| Chile   | UTFSM                          | C  |
| China   | BISEE                          | C  |
| China   | Beijing Normal U.              | C  |
| China   | CAGS                           | C  |
| China   | ChongQing University           | C  |
| China   | CIAE                           | C  |
| China   | DGUT                           | C  |
| China   | ECUST                          | C  |
| China   | Guangxi U.                     | C  |
| China   | Harbin Institute of Technology | C  |
| China   | IHEP                           | C  |
| China   | Jilin U.                       | C  |
| China   | Jinan U.                       | Cz |
| China   | Nanjing U.                     |    |

Nankai U. hina NCEPU hina hina Pekin U. hina Shandong U. hina Shanghai JT U. hina Sichuan U. hinal IMP-CAS hinal SYSU hina Tsinghua U. hina UCAS USTC hina U. of South China hina hina Wu Yi U. hina Wuhan U. hina Xi'an JT U. hina Xiamen University hina NUDT cech R. Charles U. Prague

Finland University of Oulu APC Paris France **CENBG Bordeaux** France CPPM Marseille France IPHC Strasbourg France LLR Palaiseau France Subatech Nantes France ZEA FZ Julich Germany RWTH Aachen U. Germany TUM Germany U. Hamburg Germany IKP FZ Jülich Germanv U. Mainz Germany U. Tuebingen Germany **INFN** Catania Italv INFN di Frascati Italv Italy INFN-Ferrara

**INFN-Milano** Italv Ital **INFN-Milano Bicocca** Italv **INFN-Padova** Italy **INFN-Perugia INFN-Roma 3** Italy **PINSTECH (PAEC)** Pakistan **INR Moscow** Russia JINR Russia MSU Russia FMPICU Slovakia National Chiao-Tung U. Taiwan National Taiwan U. Taiwan National United U. Taiwan SUT Thailand NARIT Thailand PPRLCU Thailand USA UMD1 USA UMD2



#### **Observers**

1. Department of Physics, Jyvaskyla University, Finland

2. Institute of Electronics and Computer Science, Riga, Latvia

# Experimental Layout



## Top tracker (solid scintillator)

## Calibration system, chimney

## **Central detector (CD)**

- Optical separation: <u>Acrylic sphere</u>
- Stainless Steel Latticed Shell
- 20 kton Liquid Scintillator
- <u>PMTs</u>: 17k 20" PMTs + 25k 3" PMTs
- Ultra-pure water buffer (2 m)

### Water Cherenkov veto pool

- 20" PMTs
- 35 kton pure water
- Earth Magnetic Field shielding coils

# Central detector (CD)

## Acrylic Sphere and Stainless Steel truss

- ✓ safety was given a priority
- ✓ 260 acrylic panels of 12 cm thickness
- ✓ Total weight: ~600 t of acrylic and ~600 t of steel







# Central detector (CD)

## LS in acrylic vessel (35.4 m diam.)

- Requirements for JUNO LS
  - Lower background for physics: <sup>238</sup>U<10<sup>-15</sup>g/g, <sup>232</sup>Th<10<sup>-15</sup>g/g, <sup>40</sup>K<10<sup>-17</sup>g/g
  - High light yield: ~10 k ph./MeV concentration of flour need to be optimized
  - Long attenuation length: >20m@430nm
  - Preliminary LS recipe (based on DYB experiment)
     20 kt LS : 3g/l PPO +15 mg/l bis-MSB in LAB
    - PPO: 2,5-Diphenyloxazole
    - Bis-MSB: 1,4-di-(2-methylstyryl)benzene, p-bis(o-methylstyryl)benzene
    - LAB: linear alkyl benzene



#### Overall LAB5 view at Daya Bay

# Jiangmen Underground Neutrino Observatory Central detector (CD)

## Double Calorimetry System

• >75% photo coverage

17k 20" PMTs

25k <u>3" PMTs</u>

- 2 independent PMT systems
- LPMT: energy resolution 3% @ 1MeV
- sPMT: control of systematics
- LPMT+sPMT: huge dynamical range



# Dynode PMT MCP-PMT $QE \times CE = 35\%$

# Jiangmen Underground Neutrino Observatory Central detector (CD)

## Calibration system



#### The challenge:

- overall energy resolution:  $\leq 3\% / \sqrt{E}$
- energy scale uncertainty: <1%

#### Four complementary calibration systems

- 1D: <u>Automatic Calibration Unit (ACU)</u>
   → central axis scan
  - $\rightarrow$  central axis scan
- 2D: <u>Cable Loop System (CLS)</u>
  - ightarrow scan vertical planes
  - Guide Tube Calibration System (GTCS)
  - $\rightarrow$  CD outer surface scan
- 3D: Remotely Operated under-LS Vehicle (ROV)
  - $\rightarrow$  whole detector scan





### Goals of veto

- Fast neutron background rejection
- Help muon tracking and cosmogenic isotopes study
- Gamma background passive shielding
- Earth magnetic field shielding

### ≻Top tracker

- Re-using the OPERA's Target Tracker (plastic scintillator, 49m<sup>2</sup>/module)
- Cover half of the top area

#### Water cherenkov detector

- ~2000 20" PMT
- 35 kton ultrapure water with a circulation system
- Detector efficiency is expected to be > 95%
- Fast neutron background ~0.1/day.



# Water Cherenkov detector



#### • Mechanical structure

 A "bird cage" structure was designed for support veto PMTs, tyvek films, cables and water pipes.

#### • Earth magnetic field (EMF) shielding system

- Use double coils system for EMF shielding .
- The theoretical calculation and prototype data are consist with each other. It's a good validation for compensation coils design of JUNO.



# **Other Physics**

Core-collapse supernovae 5000 IBD/10 s @10kpc

Probe SN explosion mechanism

DSNB

1-2 evts/year Up to 3 sigma detection level for standard parameters Probe transition region
of MSW paradigm
Study solar metallicity

Solar v tens of <sup>8</sup>B-v/day

Geo <del>V</del> 400 evts/year

Precise knowledge on backgrounds needed

# Supernova (SN) burst neutrinos



- ✤ Huge amount of energy (3×10<sup>53</sup>erg) emitted in neutrinos (~0.2M<sub>☉</sub>) over long time range
- 3 phases equally important

| Process                                                                              | Туре | Events $\langle E_v \rangle {=} 14 MeV$ |  |  |
|--------------------------------------------------------------------------------------|------|-----------------------------------------|--|--|
| $\overline{v}_e {+} p \rightarrow e^{+} {+} n$                                       | CC   | 5.0×10 <sup>3</sup>                     |  |  |
| $v+p \rightarrow v+p$                                                                | NC   | 1.2×10 <sup>3</sup>                     |  |  |
| $v + e \rightarrow v + e$                                                            | ES   | 3.6×10 <sup>2</sup>                     |  |  |
| $v + {}^{12}C \rightarrow v + {}^{12}C^{\star}$                                      | NC   | 3.2×10 <sup>2</sup>                     |  |  |
| $v_e {+}^{12}C \rightarrow e^{-} {+}^{12}N$                                          | CC   | 0.9×10 <sup>2</sup>                     |  |  |
| $\overline{v}_e {+}^{12}C \rightarrow e^{+} {+}^{12}B$                               | CC   | 1.1×10 <sup>2</sup>                     |  |  |
| NB Other $\langle E_y \rangle$ values need to be considered to get complete picture. |      |                                         |  |  |

# Expected events in JUNO for a typical SN distance of 10 kpc

We try to be able to handle Betelgeuse (d ~0.2 kpc) resulting in ~10 MHz trigger rate

J.Phys. G43 (2016) no.3, 030401

# Diffuse SN neutrino background



Never observed yet!

#### 10 Years' sensitivity

| Syst. uncertainty BG                              | 5 %         |              | 2            | 0%           |
|---------------------------------------------------|-------------|--------------|--------------|--------------|
| $\langle \mathrm{E}_{ar{ u}_{\mathrm{e}}}  angle$ | rate only   | spectral fit | rate only    | spectral fit |
| $12 \mathrm{MeV}$                                 | $1.7\sigma$ | $1.9\sigma$  | $1.5\sigma$  | $1.7 \sigma$ |
| $15\mathrm{MeV}$                                  | $3.3\sigma$ | $3.5 \sigma$ | $3.0 \sigma$ | $3.2 \sigma$ |
| $18\mathrm{MeV}$                                  | $5.1\sigma$ | $5.4 \sigma$ | $4.6 \sigma$ | $4.7\sigma$  |
| $21{ m MeV}$                                      | $6.9\sigma$ | $7.3\sigma$  | $6.2 \sigma$ | $6.4 \sigma$ |

# Geoneutrino

#### Big advantage:

/ Big volume and thus high statistics!

#### Main limitations:

- ✓ Huge reactor neutrino background;
- Relatively shallow depth cosmogenic background;

#### Critical:

 Keep other backgrounds (<sup>210</sup>Po contamination!) at low level and under control;

| Source                                   | Events/year     |
|------------------------------------------|-----------------|
| Geoneutrinos                             | $408 \pm 60$    |
| U chain                                  | $311\pm55$      |
| Th chain                                 | $92 \pm 37$     |
| Reactors                                 | $16100\pm900$   |
| Fast neutrons                            | $3.65 \pm 3.65$ |
| <sup>9</sup> Li - <sup>8</sup> He        | $657 \pm 130$   |
| $^{13}\mathrm{C}(lpha,n)^{16}\mathrm{O}$ | $18.2\pm9.1$    |
| Accidental coincidences                  | $401 \pm 4$     |

## Simulated JUNO antineutrino spectrum (prompt energy) and the best fit



- Current (KamLAND and Borexino ) precision on geoneutrino flux is ~17-25%
- JUNO can reach 17% precision within the first year and 6% after 10 years
- Geological study of the local crust: separate mantle contribution
- Join efforts of other future experiments: SNO+, Jinping, HANOHANO, ...

[arXiv:1510.01523]

JUNO Schedule

Jiangmen Underground Neutrino Observatory





- JUNO is a multipurpose medium baseline (52.5 km) reactor neutrino experiment under construction in China
- > The mass hierarchy determination on  $3\sigma$  after 6 years (or even better: 4.4 $\sigma$  with 1% constrain on  $|\Delta m^2_{\mu\mu}|$ )
- Significant improvement of the uncertainty of  $\sin^2 2\theta_{12}$ ,  $\Delta m_{12}^2$  and  $\Delta m_{ee}^2$
- Data for other investigations: SN, solar, atmospheric and geoneutrinos, proton decay, ...
- Start of data taking in 2020





# Backup slides

JUNO sensitivity on MH



# Solar neutrinos

Fusion reactions in solar core: powerful source of electron neutrinos O(1 MeV)

JUNO: neutrinos from <sup>7</sup>Be and <sup>8</sup>B chains

Investigate **MSW effect**: Transition between vacuum and matter dominated regimes

Constrain **Solar Metallicity** Problem: Neutrinos as proxy for Sun composition



