Dark Matter Search with ADMX

NOAH S. OBLATH

Exploring the Dark Universe
XIIIth Rencontres du Vietnam
July 28, 2017, Quy Nhon, Vietnam
Overview

- Motivation for axions as cold dark matter
- The Axion Dark Matter eXperiment (ADMX)
- Preliminary Sensitivity
- Moving to higher masses
Why Axions?

- Original motivation: axions are a result of the symmetry proposed by Peccei and Quinn to solve the Strong CP problem.
- They satisfy the basic properties of “standard” cold dark matter:
 - Weakly interacting with normal matter
 - Gravitational interactions
 - Long-lived
 - Cold
- Axions are an ideal dark-matter candidate.
Where to Look for Axions: Coupling

- Primakoff conversion

- Axion coupling to photons is via a fermionic loop

- In the KSVZ model axions couple only to quarks

- In the DFSZ model axions couple to both quarks and charged leptons
Where to Look for Axions: Mass

- Lower bound at 1 \(\mu \text{eV} \) from CDM constraints
- Upper bound at 1 meV from SN1987A
- Theoretical predictions of the dark-matter axion mass tend to fall in the 1-100 \(\mu \text{eV} \) mass range
- This provides a “sweet spot” for performing a dark-matter axion search

Recent predictions of axion mass for 100% axion dark matter. In some cases, lower bounds.
The ADMX Generation-2 (G2) program will cover the most likely parameter space for cold dark matter.

Sensitivity will reach the DFSZ bound between 2 and 41 μeV.
ADMX is an Axion Haloscope

- ADMX is an ultra-sensitive microwave detector, capable of measuring 10^{-23} W signals
- Axions continuously convert to microwave photons (GHz)
- We measure the amount of power in the cavity in a small frequency band

\[
\text{SNR} \propto \frac{P_{\text{sig}} \sqrt{t}}{T}
\]
\[
P_{\text{sig}} \propto B^2 V
\]
The ADMX Detector

Field cancellation coil
SQUID amplifier package
Dilution refrigerator
Antennas
8-Tesla solenoid magnet
Microwave cavity
Cryogenics

- Cavity and electronics are cooled with a dilution refrigerator to minimize system noise

![Cryogenic equipment](image)

ADMX G2 Temperature

- **Design requirement:** 150 mK

Preliminary
Quantum-Limited Amplifiers

- Quantum mechanics forces a linear amplifier to contribute at least half a photon per resolution bandwidth to the system noise.

- We have amplifiers that operate near that limit.

Gain = 20 dB

At $T_{\text{bath}} = 50 \text{ mK}$
Noise temperature: $T_{N,\text{opt}} = 48 \pm 5 \text{ mK}$

Quantum limit $T_Q = 30 \text{ mK}$

Clarke Group, UC Berkeley
Quantum-Limited Amplifiers

Figures from 2nd Workshop of Microwave Cavities and Detectors for Axion Research
Determining the System Noise

- Need to understand the system noise temperature to accurately assess sensitivity
- Perform a Y-factor measurement using two known physical temperatures
- System noise determined to be ~0.5K
Synthetic Axion Injection

- We can inject synthetic axions through a weakly-coupled port
- Can run in blinded mode where operators are unaware of injections
- Unblinded mode is used for signal verification and calibration

![Graph showing raw data with a peak labeled as Expected axion signal x100.](image-url)
Operating ADMX

Live analysis

- Cavity frequency scanned until a desired signal-to-noise level is reached
- Regions with power above trigger threshold are flagged as potential candidates
 - Could be statistical anomalies, external RF leakage, synthetic injected axions, or real detected axions
- Candidates are rescanned to see if they persist
- For persistent candidates, perform confirmation tests:
 - Switch to resonant mode that doesn’t couple to axions
 - Turn B field down (axion power scales as \(B^2 \))

Offline analysis

- Vary bin size to look for higher-frequency structure
- High resolution analysis looks for ultra-sharp lines
Current Status

- Pursuing first measurement down to DFSZ sensitivity

- Science data taken from January-June 2017

- Data is being analyzed

- The insert is being refit for a new frequency range

- Will complete up to 1 GHz over the next year

![Graph showing Axion Coupling vs. Axion Mass and Cavity Frequency](attachment:image.png)
First Axion Search at DFSZ Sensitivity

Axion Mass (μeV)

KSVZ

DFSZ

ADMX 2004

ADMX G2 May 2017
90% Sensitivity Estimate

PRELIMINARY
Moving to Higher Frequencies

- Goal: search for axions with higher masses → higher frequencies

- As we increase frequency
 - Expected axion coupling increases
 - Cavity volume decreases → lower signal
 - Cavity Q decreases → lower signal
 - Quantum limit increases → higher noise

- Use multiple cavities with signals added coherently
Current Single-Cavity System

Frequency range: 500 MHz – 1 GHz
Operating at DFSZ sensitivity now!
Data-taking for the 5-7 GHz range is complete

Prototype for using piezoelectric controls, and data-taking at higher frequencies
1-2 GHz: Four-Cavity Array

Frequency range: 1-2 GHz

Prototype being fabricated now
2+ GHz: Cavity Arrays and Other Designs

| Cavity Frequency (GHz) | Axion Coupling $|g_{\text{array}}|$ (GeV$^{-1}$) |
|------------------------|---|
| 1 | 10^{-9} |
| 10 | 10^{-10} |
| DFSZ | 10^{-12} |
| ADMX G2 | 10^{-14} |

Axion Mass μeV

Cylindrical cavities from 2-6 GHz

Other resonator designs for 6-10 GHz
Beyond ADMX G2: 10+ GHz

Periodic Dielectric Resonator

Superconducting Qubit Detector
Summary

- Axions solve the Strong-CP problem and are a compelling dark-matter candidate
- ADMX will search for axions between 500 MHz and 10 GHz
- We took science data from January to June 2017
- First experiment to reach sensitivity for DFSZ axions, and final results are coming soon
- Higher-frequency systems will follow for 1+ GHz
The ADMX Collaboration

University of Washington

University of Florida

Lawrence Livermore National Laboratory

Fermilab

University of California, Berkeley

This work is supported by U.S. Department of Energy Office of Science, Office of High Energy Physics, under awards DE-SC00098000, DE-SC0011665, DE-AC52-07NA27344, and DE-AC03-76SF00098, the Heising-Simons Foundation, and the Laboratory-Directed Research and Development programs at Fermi National Accelerator Laboratory, Lawrence Livermore National Laboratory, and Pacific Northwest National Laboratory.