Galactic dark matter search with SABRE, a dual-site detector using ultra-pure Nal(TI) scintillator

> Greg Lane Australian National University

on behalf of the SABRE collaboration

Exploring the Dark Universe, Quy Nhon, July, 2017

Laboratori Nazionali del Gran Sasso

Dark Matter: WIMPs in the galactic halo

Universitv

Dark Matter Detectors: Results

Location	Name	Detector	Started	Findings
Gran Sasso mountain, Italy	CRESST-II	3 kilograms of calcium-tungstate crystals	2009	Possible dark-matter signals later shown to be background
	DAMA/LIBRA	250 kg of sodium- iodide crystals	2003	Annual modulation signal, still unexplained
_	DarkSide-50	50 kg of liquid argon	2013	No signals
	XENON1T	3,500 kg of liquid xenon	Due spring 2016	No signals from precursor experiments
Homestake mine, South Dakota	LUX	370 kg of liquid xenon	2013	No signals
Mozumi mine, Kamioka, Japan	XMASS-I	835 kg of liquid xenon	2010	No signals
Vale Inco mine, Sudbury, Canada	PICO-60	37 kg of trifluoromethyl iodide	2013	No signals
Soudan mine, Minnesota	CoGeNT	0.5 kg of germanium crystals	2009	Possible dark-matter signals later shown to be background
	CDMS	9 kg of germanium crystals	2012	No signals

Exploring the Dark Universe, Quy Nhon, July, 2017

Summary from Nature News, Nov 2015

- "No signals" means no evidence claimed for DM.
- All in underground labs to achieve low backgrounds.
- All labs are (presently) in the northern hemisphere (N.B. DM-ICE at the south pole is not listed).
- Some initial claims of DM signals subsequently shown to be background.
- Persistent signal from DAMA/LIBRA is still unexplained; tension with other null results.

- Nal(Tl) scintillator WIMPs scatter off sodium and/or iodine nuclei
- LNGS (Italy) since 1995
- 100 kg (DAMA-Nal, 7 years)
- 250 kg (DAMA/LIBRA, 6+ years)
- 25 x 10kg crystals each with two PMTs

Detector Apparatus: Bernabei et al, NIMA 592 (2008) 297–315

Combined DAMA/Nal – DAMA/LIBRA results: Bernabei et al, EPJ C 73 (2013) 2648.

Ongoing phase 2 of DAMA/LIBRA: Bernabei et al, NIMA 742 (2014) 177.

DAMA/LIBRA – 9σ signal – Dark Matter?

Time (day)

- 13 annual cycles
- Amplitude: 0.0112(12) cpd/ kg/keV
- Phase: 144(7) days vs expected 152.5 days
- Signal observed in cuts between $E_{ee} = 2-6 \text{ keV}$

Limits on WIMP mass/cross-section

Spin-independent WIMP cross sections (normalised to a single nucleon). C. Patrignani *et al.* [PDG], Chinese Physics C 40 (2016) 100001.

Exploring the Dark Universe, Quy Nhon, July, 2017

Tension between DAMA/LIBRA and other results... Why?

- Modulation from other seasonal causes?
 - Radon, temperature, pressure, muons, etc, etc, have all been investigated – signal persists.
- Uncertainty in quenching for low energy nuclear recoils?
- DM signal in DAMA near a known 3 keV background from ⁴⁰K.
- DAMA is (was) unique as the most sensitive Nal-based DM detector – despite extensive investigation of backgrounds, seasonal variations are hard to rule out.

SABRE is a new approach using NaI(TI) that aims to confirm or refute the DAMA signal.

SABRE – Collaboration

THE UNIVERSITY

of ADELAIDE

Collaboration: 11 Institutions from Italy, US, UK and Australia

Princeton University

Imperial College

NATIONAL LABORATORY

Pacific Northwest

London

Lawrence Livermore National Laboratory (LLNL)

Lawrence Livermore National Laboratory

UNIVERSITY

PRINCETON

- Pacific Northwest National Laboratory (PNNL)
- INFN Laboratori Nazionali del Gran Sasso
- Sapienza Università di Roma & INFN

Sapienza

INFN

UNIVERSITÀ

DEGLI STUDI

DI MILANO

Università degli Studi di Milano & INFN

- Australian National University
- University of Adelaide
- University of Melbourne
- Swinburne University of Technology

Gregory.Lane@anu.edu.au 7

SABRE: Sodium iodide with Active Background REjection

Plans and Strategies to Confirm/Refute DAMA Signal

Control seasonality

- Northern/Southern hemisphere detectors Seasonal backgrounds out of phase, DM signal in phase.
- Gran Sasso and Stawell Underground Physics Laboratory (SUPL).
- SUPL hopes to be the first deep underground lab in the southern hemisphere (c.f. plans for ANDES Lab; South pole (DM-ICE) is not a general purpose lab)
- Improved backgrounds via both active and passive approaches
 - Active scintillator veto surrounding NaI(TI) to reduce internal and external background
 - Nal(Tl) crystals with higher purity than DAMA
 - Low radioactivity enclosures and PMTs
- Lower WIMP energy threshold
 - High QE PMTs directly coupled to NaI(TI) crystals
 - Fully digital DAQ with PSD based data analysis to give improved backgrounds.
 - Clarify conflicting quenching factor measurements that don't affect experimental E_{ee} threshold, but do impact E_{NR} and the implied WIMP energies.

Testing DAMA and confronting seasonal backgrounds

Other Nal-based DM detectors can test DAMA, but possibly the best test is to use similar detectors in both the northern and southern hemispheres.

Northern Detectors: ANAIS, PICO-LON, KIMS-NaI/COSINE, SABRE NORTH Southern Detectors: DM-ICE, SABRE SOUTH

SUPL – Stawell Underground Physics Laboratory

Gold mine with decline construction, accessible by car/truck, basalt rock, flat

Gregory.Lane@anu.edu.au

10

SABRE: Sodium iodide with Active Background REjection

Plans and Strategies to Confirm/Refute DAMA Signal

Control seasonality

- Northern/Southern hemisphere detectors Seasonal backgrounds out of phase, DM signal in phase.
- Gran Sasso and Stawell Underground Physics Laboratory (SUPL).
- SUPL hopes to be the first deep underground lab in the southern hemisphere (c.f. plans for ANDES Lab; South pole (DM-ICE) is not a general purpose lab)
- Improved backgrounds via both active and passive approaches
 - Active scintillator veto surrounding NaI(TI) to reduce internal and external background
 - Nal(Tl) crystals with higher purity than DAMA
 - Low radioactivity enclosures and PMTs
- Lower WIMP energy threshold
 - High QE PMTs directly coupled to NaI(TI) crystals
 - Fully digital DAQ with PSD based data analysis to give improved backgrounds.
 - Clarify conflicting quenching factor measurements that don't affect experimental E_{ee} threshold, but do impact E_{NR} and the implied WIMP energies.

SABRE – Active Background Rejection

SABRE – Passive background removal

High-purity Nal Powder

- Developed at Princeton with Sigma-Aldrich and Seastar
- ICP mass spectroscopy by Seastar and PNNL
- Accelerator Mass Spectrometry (AMS) for ultrasensitive measurements at Australian National University (ANU)

High Purity Crystals

- Crystal growth (Princeton in collaboration with RMD, Radiation Monitoring Devices)
- 2kg, high-purity with 88mm diam achieved
- Good scintillation properties
- <K> ~9 ppb and still improving (DAMA ~ 13 ppb)
- <Rb> < 0.1 ppb (DAMA < 0.35ppb)

Actual Detector Crystals

- Require 5kg
- Full-scale crystal for proof of principle test at Gran Sasso is in production.

High-purity, 2kg test crystal

Gregory.Lane@anu.edu.au 14

Accelerator Mass Spectrometry (AMS) at ANU

- Measure contaminant radionuclide isotope ratios through atom counting
- Ultrasensitive
- Unstable/stable atom ratio sensitivity of 10⁻¹² 10⁻¹⁷
 - Requires sampledependent chemistry
- Pacific Northwest National Laboratory (USA) performs high performance ICPMS (Inductively Coupled Plasma Mass Spectrometry).
 - Broader application but can have less sensitivity.

SABRE AMS measurements so far

Limitations:

- Need to be able to dissolve sample and extract the element of interest.
- Measures atom ratios isotopic spike may be needed to convert to an absolute yield.

Application 1: 129 I, T_{1/2}=15.7 Myr, produced through activation.

- Q(β)=189 keV \rightarrow produces low energy β and a 40 keV γ .
- Sensitivity of ¹²⁹I/I < 10⁻¹⁴ has been demonstrated \rightarrow 56 µBq/kg of NaI.
- ¹²⁹I/I measured in growth- and astro-grade NaI powder: 2.0(1)x10⁻¹³
 (c.f. DAMA value of 1.7x10⁻¹³ inferred from ¹²⁹I decay in their crystals).

Application 2: 210 Pb, T_{1/2}=22.2 yr, environmental contamination, important background

- Pure Pb samples have demonstrated ²¹⁰Pb/Pb ratios of 10⁻¹⁴
 - Measurement sensitivity of 1 mBq/kg under ideal conditions.
- However, efficiency/purity of the chemical extraction of Pb also matters...
- A single test measurement for ²¹⁰Pb in Nal has been made:
 - Much of the extracted material was not Pb, diluting the beam current
 - ~100 mBq/kg sensitivity achieved under these very unfavourable conditions.
- Significant improvements will be possible, but the ultimate sensitivity is not yet clear.

Other applications?

Encapsulation and PMTs

Hamamatsu R11065-20 3-inch PMTs with direct optical coupling to crystals

- QE 35% (c.f. 12% in DAMA/LIBRA)
- Low radioactivity per PMT
 - ~3 mBq U, ~0.5 mBq Th/Co and ~2 mBq K
- New PMT stem: Ceramic feedthroughs with ultrahigh purity alumina
- Packaged in air- and light-tight, low-radioactivity, ultra-pure copper.

SABRE: Sodium iodide with Active Background REjection

Plans and Strategies to Confirm/Refute DAMA Signal

Control seasonality

- Northern/Southern hemisphere detectors Seasonal backgrounds out of phase, DM signal in phase.
- Gran Sasso and Stawell Underground Physics Laboratory (SUPL).
- SUPL hopes to be the first deep underground lab in the southern hemisphere (c.f. plans for ANDES Lab; South pole (DM-ICE) is not a general purpose lab)
- Improved backgrounds via both active and passive approaches
 - Active scintillator veto surrounding NaI(TI) to reduce internal and external background
 - Nal(Tl) crystals with higher purity than DAMA
 - Low radioactivity enclosures and PMTs
- Lower WIMP energy threshold
 - High QE PMTs directly coupled to NaI(TI) crystals
 - Fully digital DAQ with PSD based data analysis to give improved backgrounds.
 - Clarify conflicting quenching factor measurements that don't affect experimental E_{ee} threshold, but do impact E_{NR} and the implied WIMP energies.

Pulse Shape Discrimination

Universitv

Importance of Quenching Factor

Only part of the nuclear recoil energy, E_{nr} , is transferred to electrons, $E_{ee}=Q E_{nr}$ (Q is poorly determined)

Position in exclusion plot depends on whether interaction is assumed to be with Na or I nuclei.

Also depends on values used for Q.

Spin-independent WIMP cross sections (normalised to a single nucleon). C. Patrignani *et al.* [PDG], Chinese Physics C 40 (2016) 100001.

Measurements of the Quenching Factor

DAMA used constant Q=0.3 for Na scattering.

Q is definitely lower and energy dependent, see Xu et al (2015, red data points)

Multiple papers have looked at how changes in Q affect the WIMP exclusion plots.

Have we reached a level of confidence in the energy dependent quenching?

J. Xu et al, Phys. Rev. C 92, 015807 (2015)

Pulsed neutron beam via ⁷Li(p,n). Q from scattering neutrons in NaI(TI), kinematics, E and TOF.

Measurements of the Quenching Factor

New ANU measurements are planned:

Better beam pulsing (1ns pulse width). Lower energy threshold. Multiple crystals.

SABRE: Sodium iodide with Active Background REjection

Plans and Strategies to Confirm/Refute DAMA Signal

Control seasonality

- Northern/Southern hemisphere detectors Seasonal backgrounds out of phase, DM signal in phase.
- Gran Sasso and Stawell Underground Physics Laboratory (SUPL).
- SUPL hopes to be the first deep underground lab in the southern hemisphere (c.f. plans for ANDES Lab; South pole (DM-ICE) is not a general purpose lab)
- Improved backgrounds via both active and passive approaches
 - Active scintillator veto surrounding NaI(TI) to reduce internal and external background
 - Nal(Tl) crystals with higher purity than DAMA
 - Low radioactivity enclosures and PMTs
- Lower WIMP energy threshold
 - High QE PMTs directly coupled to NaI(TI) crystals
 - Fully digital DAQ with PSD based data analysis to give improved backgrounds.
 - Clarify conflicting quenching factor measurements that don't affect experimental E_{ee} threshold, but do impact E_{NR} and the implied WIMP energies.

WHAT EXACTLY IS SABRE AND HOW WILL IT PERFORM?

SABRE Proof of Principle – Expected Performance

Somewhat different assumptions, but essentially excellent agreement

SABRE Performance – Backgrounds

SABRE Performance – Expected modulation signals

Independent modelling of the expected modulation signals. Each based on the respective background modelling and a standard galactic halo.

Both based on 50 kg of NaI(TI) in the PoP vessel

- Good agreement.
- 3 year measurement should give either a 6 σ refutation or a 4 σ verification.
- SABRE North and South can be combined if the signal is DM related and not a seasonal background.

SABRE PoP – Status

PoP vessel arrived at LNGS in Nov 2016

Temporary location in Hall B is being used for preliminary (ongoing) tests:

• PMTs, DAQ, Trigger logic, water run, etc,

High-purity, full-size crystal currently being prepared at Princeton and RMD. Hope to have at LNGS within next few months.

SABRE PoP – Permanent home

Hall C at LNGS

- Refurbishment completed and floor prepared.
- Installation of water, polyethylene and lead shielding is underway.
- Move of PoP vessel, insertion of high-purity crystal, and commissioning/initial data collection by the end of 2017.

Full SABRE – Status and activities

- SABRE North will proceed at LNGS after successful operation of the PoP.
- SABRE South is moving straight to a full detector.
 - Australian mine regulations prevent use of PC. Will instead use linear alkyl benzene (LAB) for the veto.
 - Different vessel design, modelling is ongoing, talking to suppliers.
 - Measurement of backgrounds in mine is ongoing.

SABRE – Summary and the future

DAMA/LIBRA DM Signal

- DAMA's long-standing and statistically significant signal is in considerable tension with other DM measurements – warrants testing and explanation.
- Conclusive test from twin detectors in both north and south hemispheres.

Stawell Underground Physics Laboratory

- Plan to be the first deep underground lab in the southern hemisphere
- Environmental, shielding and radioactivity characteristics broadly comparable to Gran Sasso
- Design completed construction negotiations are underway. Hope for completion in 2018

SABRE

- We believe we have the highest-purity NaI(TI) crystals ever made.
- Twin detectors with these crystals and active veto systems to be sited in both Gran Sasso (Italy) and Stawell (Australia).
- SABRE PoP to be deployed in Gran Sasso in 2017.
- Full experiments to be installed in 2018/2019 both SUPL and LNGS.
- 3 years of operation for a definitive test of the DAMA/LIBRA DM signal.

Acknowledgments: SABRE Collaboration

Industrial Partners:

Sigma-Aldrich, MV Industries, SEASTAR Chemicals, Radiation Monitoring Devices, Hamamatsu

Content for this talk:

Guilia D'Imperio (Roma), Burkhant Suerfu (Princeton/LLNL), Phil Urquijo (Melbourne), Andrew Stuchbery (ANU), Francesco Nuti (Melbourne), Tiziano Baroncelli (Melbourne), Frank Calaprice (Princeton), Toni Wallner (ANU), Francis Froborg (Imperial), Elisabetta Barberio (Melbourne),

