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On being an “expert

= I've been accused of being an expert on the Galactic
Centre...this is only true to the extent that an expert is
somebody who understands the full enormity of our ignorance
in a particular field. ..



Preface: why 1s the Galactic Gentre interesting?

» High dark matter density should mean that the Galactic
Centre is one of the best places in the sky to seek indirect
evidence of its annihilation (Bergstrom+97)
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Preface: why 1s the Galactic Gentre interesting?

» High dark matter density should mean that the Galactic
Centre is one of the best places in the sky to seek indirect
evidence of its annihilation (Bergstrom+97)

+» On the other hand:
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Preface: why 1s the Galactic Gentre interesting?

» High dark matter density should mean that the Galactic
Centre is one of the best places in the sky to seek indirect
evidence of its annihilation (Bergstrom+97)

= On the other hand:
» There’s a lot of Galaxy between us and the GC
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Galactic Centre Dark Matter(?)

» Researchers motivated to search for anomalous signals
from the GC that are potential dark matter signatures
have done remarkably well in turning up such signals



Remarkable Non-Thermal Phenomena of the GC/Inner Galaxy:

(Quasi) point-like GeV and TeV v-ray source coincident with Sgr A*
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Remarkable Non-Thermal Phenomena of the GC/Inner Galaxy:

(Quasi) point-like GeV and TeV y-ray source coincident with Sgr A*
Extended (few degrees) GeV & TeV emission
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Remarkable Non-Thermal Phenomena of the GC/Inner Galaxy:

(Quasi) point-like GeV and TeV y-ray source coincident with Sgr A*
Extended (few degrees) GeV & TeV emission
Non-Thermal Radio (and X-ray) Filaments (NTFs)
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Remarkable Non-Thermal Phenomena of the GC/Inner Galaxy:

(Quasi) point-like GeV and TeV y-ray source coincident with Sgr A*
Extended (few degrees) GeV & TeV emission

Non-Thermal Radio (and X-ray) Filaments (NTFs)

130 GeV ‘line’
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Remarkable Non-Thermal Phenomena of the GC/Inner Galaxy:

(Quasi) point-like GeV and TeV y-ray source coincident with Sgr A*
Extended (few degrees) GeV & TeV emission

Non-Thermal Radio (and X-ray) Filaments (NTFs)

130 GeV ‘line’

~GeV vy-ray spectral bump ‘GC Excess’
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Remarkable Non-Thermal Phenomena of the GC/Inner Galaxy:

(Quasi) point-like GeV and TeV y-ray source coincident with Sgr A*
Extended (few degrees) GeV & TeV emission

Non-Thermal Radio (and X-ray) Filaments (NTFs)

130 GeV ‘line’

~GeV vy-ray spectral bump ‘GC Excess’

511 keV positron annihilation line
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Bulge Positron Problem




Remarkable Non-Thermal Phenomena of the GC/Inner Galaxy:

(Quasi) point-like GeV and TeV y-ray source coincident with Sgr A*
Extended (few degrees) GeV & TeV emission

Non-Thermal Radio (and X-ray) Filaments (NTFs)

130 GeV ‘line’

~GeV y-ray spectral bump ‘GC Excess’

511 keV positron annihilation line

Non-thermal microwave “haze’
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Remarkable Non-Thermal Phenomena of the GC/Inner Galaxy:
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The Galactic Centre

» In very general terms, the GC is a peculiar and
remarkable environment within the Galaxy

= We should therefore exercise great caution in
‘normalising” our expectations for its astrophysical
signals via observations performed locally



Our view of the GC

» Spectral windows: we can observe the GC at radio, sub-
millimeter, infrared, X-ray and y-ray wavelengths

+ A lot of our information about the GC is from non-

thermal emission
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Generic Galactic 'SED' (Spectral Energy Distribution)

= Radio, millimetre, infra-red, optical, UV, X-ray, HE y-ray, VHE y-ray

GC suffers 30
magnitudes visual
extinction,

nH ~ 1026m=

Inverse
Compton

http://www-zeuthen.desy.de/astro-workshop/vortraege/donnerstag/puehlhofer zeuthen.pdf




Given all this, what do we actually
know about the Galactic Centre?



It certainly contains dark matter: there is a 4 Million
Solar Mass chunk at the Galaxy’s dynamical




A Quiescent (?) Giant

» SMBH itself exhibits remarkably little activity across the
EM spectrum



A Quiescent (?) Giant

» SMBH itself exhibits remarkably little activity across the
EM spectrum

= In contrast, we know that for some external galaxies,
energy liberated in accretion on to a SMBH can
‘feedback’ to have an influence on galactic or even
galaxy cluster scales

o .



Fermi Bubbles

Fermi data reveal giant gamma-ray bubbles

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.

Su, Slatyer and Finkbeiner 2010 (Ap])

52



WMAP Haze
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The S-PASS lL.obes

Northem Ridge
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‘Fermi Bubbles mnm versuon of'radio galaxy 1ets
powered by central supermassive black hole? &
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'Fermi Bubbles = nuclear starburst with QutfloWing winds?
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The SMBH is surrounded by a region hosting intense star formation

Why?

» Any process that causes disk matter to lose angular
momentum sends it inwards; the GC is always accreting
oas (at some level)

» In particular, the non-axisymmetric bar potential
torques gas inwards

» 5-10% of the Galaxy’s Hz is located in the GC...and a
similar fraction of all Galactic star formation
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Central Molecular Zone

+» Much of the GC’s H» is located in a ~30 million

solar mass torus of gas

» The torus hosts on-going, intensive, localized star-

formation

« This star formation activity produces a highly

energised interstellar medium
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An Extreme ISM 1n GC...

- SFR surface density over CMZ 2 3 orders of magnitude
larger than mean in disk (0:Z+ ~ 2 Mo yr! kpc?) and
sustained

- The SF activity (stellar winds, supernovae) sustains an
energy density in the different GC Interstellar Medium
(ISM) phases about 2 orders of magnitude larger than
typically found in the local ISM

GC: U ~ Uturb ~ Uplasma ~ Uisrr ~ 100 eV cm?™

local: Up ~ Uturb ~ Uplasma ~ Ursre ~ 1 €V ecm™
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Where 1s the Galactc Centre?

Fermi Collab./NASA




Central Molecular Zone

» The nuclear star formation activity is also easily
intense enough to launch a nuclear wind
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A Few More Words on the Origin of Galactic Positrons

credit: Weidenspointner et al. 2008



Galactie, low-energy positron population

» Existence of low energy, trans-relativistic positron (e*)
population demonstrated by annihilation radiation
from the Inner Galaxy

= [Not to be confused with the directly-detected local
cosmic ray positron population]

» ~bx10% e*/s annihilate in the Galaxy (Siegert et al.
2016) S i LR P R o .
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Positron Annihilaton Observations

» Depending on ISM conditions, positrons annihilate in
flight or form a positronium atom and then annihilate

e- \ei—
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Positron Annihilaton Observations

» Continuum gamma-rays below 511 keV and 511 keV
line widths inform us that most (~100%) of positrons
annihilate through the formation of positronium

» Positron annihilation is tracing the moderately warm

and partly ionised interstellar gas:
T = 8000 K, n,= 0.1-0.3, x,.= 0.05-0.2 (Siegert et al. 2016)
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slide credit:

Thomas Siegert Positron Annihilation Observations
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Positron Annihilaton Observations

» Central mystery: very large positron luminosity ratio
bulge:disk (B/D)...not seen at any other wavelength

« bulge/disk positron luminosity:
B/D ~04

> Star Formation Ratepuige] / SFRdisk] ~ 0.1
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A ot
» Large B/D prompted theories of “special sour 0\&‘ 6\%&
. 00 * ‘\6 . 00
» Super-Massive Black Hole? >< 6 \\ “\‘

» need process to transport r ®$ \ &‘0 6\65&“ .ale of bulge;

diffusion does not Wo;“ “ 00‘
» Dark Matter (Boe’ \
N\ R\S,

C
o“‘
d1ff1cu1* ﬁ‘&‘o f’

-y constraint from continuum gamma-

QQQ \“\@% QQQD\&Jecom Bell & Bertone 2005; Beacom &
R\
SV
Q)Qcﬁg 6“ %Q@ _ rule out compact sources like pulsars

o u, perfectly consistent with e* from f* decay of radionuclides
~un stars and / or supernovae..

49



Recent Discovery
(Siegertetal. 2016):

» Detection (>50) of separate positron source in
Galactic nucleus

» Poor angular resolution of INTEGRAL SPI (~3")
means that we do not know whether this source is

=« truly the super-massive black hole or

« the Nuclear Bulge/Central Molecular Zone region
of ~300 pc width surrounding the SMBH

50



New situation after publication of Siegert et al. 2016:

= Note that a stellar positron source connected to OLD
stars could explain entirety of gross, Galactic positron
injection morphology because

+ B/D =(0.42+0.09)
~ MasSbuige] / M ass|disk]

= NB/B = (0.083+0.021)

= MaSS[nuclear bulge] /MaSS[bulge] = (.09

..but exactly how old would stellar positron sources need to be?



SFR/(M@/yr)

Galactc Star Formation History
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How old does a szellar positron source need to be?

i |
- model =10 x obs

model = obs

Log|[model/obs]

Logltelyr] 6 Gyr
s (B/D)mog/(B/D)obs

[ (N/B)mod/(N/B)ObS



How old does a szellar positron source need to be?

model = obs

Log[model/obs]

300 Myr - 1 Gyr delay LOg[tp/yr] 6 Gyr
time of ‘ordinary’ N (B/ D) mod /( B /D)obs

SNIa measured

in external galaxies [ (N/ B) mod / ( N/ B)obs



What are these events?

» Our answer: “'SN1991bg-like’ superrvo@
<O

» These are sub-luminous Type I y&&% onuclear)

supernovae that occur in o]é’%&&quf opulations
b

» 15% of SNIa in all gala’q)g\(\s\.éb

SN

+ Direct, spectroscc"c&é -é’-x,nce they synthesise Ti

D . . e

+ Frequency s- (¢ -e increasing with cosmic time as

required by ov.  ..alysis
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Summary

» Our main GC background: the unknown
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(Juestions?
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galactic center astrology
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galactic center in natal chart
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Press Enter to search. Report inappropriate predictions
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The GC1s a complicated region

“..radio arc

purple: 20.cm radid

continuum . pulsar wind nebuta -

orange: 1.1.mm (cold dust)
cyan: IR (PAHS) i

-

Brlght radio pomt sourceﬁ'gr R* ?
first identified in the 1970s aﬂdtherm'by
coincident with dynamical centre of

(Galaxy. Variable over tens of days. |

Imége_courtesy.df NRAO/AUI : -



New observational situation following Siegert+2016 results:
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—

=76alactic Centre Source = 50
] Narrow Bulge
_ & } = 560

10 ° -

% Disk =120

;. 10" -

% Crab: 31o

) : Cyg X-1: 110
m1.-l")fi' . 5'0 . 0 . =50 . -100

Giraclie D angilude: [daeg]

0

Siegert+2016

5 200

¢ 10
Flux [phem s 'key Ter ')

* Disk size: 140’75 deg FWHM longitude; 25*% deg FWHM latitude

ueﬁegé éewoq 1 :}paJd apl|s

-4 ~ Slice through |=0



SFR/(M@/yr)

Galactc Star Formation History
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today . Big Bang
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How old does a szellar positron source need to be?

i |
- model =10 x obs

model = obs

Log|[model/obs]

Logltelyr] 6 Gyr
s (B/D)mog/(B/D)obs

[ (N/B)mod/(N/B)ObS



Plischke et al. 2011
°Nj — °%Co — °Fe +e™ 1 =80d

Ui —» 4MSc — ¥Ca+et 1=60yr



Another problem for °°Ni positrons from SNla

» “°Ni — *°Co — Fe ~80 day decay time: positron
trapping in SN ejecta

» Late-time pseudo-bolometric light curves of SNIa

indicate complete trapping: vast majority of positrons
from SNIa *°Ni never reach the ISM
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... Trapping not a problem for **Ti:

» #Ti — #5c — #Ca ~70 YEAR decay time: supernova
positrons can reach ISM

» BUT also y-ray and X-ray line associated with this decay
chain and measured total luminosity of *Ti sky lines too
small to account for Galactic positron injection rate

» Moreover, daughter nucleus “*Ca measured in solar
system material; inferred production rate too small to
account for Galactic positron injection rate

65



Is 44T ruled out?
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Is 44T ruled out?

« NO! What is required to evade these problems is that:

 #Ti-producing events are more common today than in the period
leading up to the formation of the solar system 4.55 Gyr ago;
naturally occurs if the stellar sources of *Ti have a ~6 Gyr delay time



A Galactic *T1 source that...

% ...occurs every 2300 years

« ...synthesises 0.02-0.03 M@ of *Ti

...happens at a delay time of ~6 Gyr post star formation

would:

= explain the absolute positron luminosity of the Galaxy

s exp.

s exp.

ain the *Ca abundance in pre-solar material

ain the bulge to disk positron luminosity ratio

» explain the nuclear bulge to bulge positron luminosity ratio

69



How old does a szellar positron source need to be?

0 X obs
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What could such a source be?

» Relatively large **Ti mass requires a helium detonation;
requires assembly large He mass at correct density

(~10°-10° g/ cm?)
» Mergers of low mass white dwarf binaries can achieve
this

» CO-WD/He-WD mergers occur at ~3-6 Gyr in our

binary population synthesis model (StarTrack;
Belczynski+); this is the time scale required by positron
phenomenology

7



(CO-He white dwarf binaries merge at 3-6 Gyr

0 X obs

model = obs

Log[model/obs]

Log[tp/yr]



What are these events?

» Our answer: ‘SN1991bg-like’” supernovae

» These are sub-luminous Type Ia (the” nonuclear)
| LD .
supernovae that occur in old stell g pulations

o
= 30% of SNIa in elliptical gal9'Q (\.Qa"
o

+ 15% of SNIa in all galax’ .é..\

N
» Direct, spectroscor QJ@ﬁfzﬂdence they synthesise Ti

» Frequency seems to be increasing with cosmic time as
required by our analysis
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Connection to the Galactic Centre Excess?

» The bulge positron annihilation signal emerges from the SAME REGION and
implies the SAME ENERGETICS as the ‘GC Excess’ ~GeV y-ray signal...are
they connected?

+ Maybe:
» The GC Excess spectrum resembles that from pulsars or millisecond pulsars

= Binary WD systems can produce millisecond pulsars directly through
‘Accretion Induced Collapse” of ONeMg WDs accreting from companions

= Our binary population synthesis model produces the right number of MSPs
to explain the GC Excess signal

» The great age of the bulge stars explains why the luminosity function of the
MSPs is systematically dimmer than local MSPs as demanded by
observations
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» direct (in)detection

» indirect (in)detection

« The Galactic Centre: the location in the Galaxy where
good astro- (and particle?) physicists go off to die
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On being an “expert

» I've been accused of being an expert on the Galactic
Centre...this is only true to the extent that an expert is
somebody who understands the full enormity of our
ignorance in a particular field...

» The Galactic Centre: the location in the Galaxy where
good astro- (and particle?) physicists go off to die



Fermi Bubbles: Two Interlocking Questions

+ Q1. What energizes the outflow?

SMBH at Sgr A*
OR

nuclear star formation

77



Energetics

g
©
o
""""

The (photon) Eddington luminosity of Sgr A* (4 x 10° MSur;.).I.S et
erg/s
3 —EXPLOSION

Star formation in the Galactic Centre at a rate ~0.08 Msun/ yr
(Crocker at al. 2011) ...the Galactic Centre is not a Starburst

This injects mechanical power (supernova explosions, stellar

Pmech ~ 0. 08 Msyn/yr.x1 SMQB%V)W\PIQLAeﬁg N

= 3 %1040 EISLSuese"
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Fermi Bubbles: Two Interlocking Questions

+ 2. What is the radiation mechanism?

‘leptonic’: Cosmic ray electrons/Inverse Compton
emission

OR

‘hadronic’: Cosmic ray protons/gas collisions

79



WMAP Haze

K-band T,
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Fermi Bubbles

» 2x10% erg/s [1-100 GeV]

= hard spectrum, but spectral down-break below ~ GeV in SED,
cut-off (?) ~100 GeV

» uniform projected intensity

» sharp edges

» vast extension: ~7 kpc from plane
» 2 few 10 erg

» coincident emission at other wavelengths
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Points for/against AGN/IC scenarios

» PRO: single electron population can explain both the Bubbles’ gamma-ray emission (as IC) and the
microwave haze (as synchrotron)

» PRO: Ha measurements suggest a hard UV “flash” may have irradiated the Magellanic Stream above
the nucleus 1-3 Myr ago (Bland-Hawthorn et al. 2013) [but the Ha emission might also be explained by
shocks: Bland-Hawthorn et al. 2007]

» CON: we are required to be seeing the Bubbles at a privileged time

» CON: Lack of a bright/hot X-ray edge suggests that Bubbles are expanding, at most, at the sound speed
300 km /s (Tahara et al. 2015, Karaoke et al. 2015)

» CON: Steep-spectrum polarized radio lobes coincident with Bubbles imply an electron population with
age > 30 Myr

= CON: Difficult to understand why gamma-ray spectrum does not evolve strongly (may even harden)
with latitude in an IC model

= CON: haze cuts off while gamma-rays continue to high lat — claimed as a result of magnetic field
effects but there is no obvious magnetic field structure where haze cuts off in 2.3 GHz polarisation maps

» How to explain geometry of windings?

» Why do RC structures feed down to objects other than Sgr A*?
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Points for/against SF/hadronic scenarios

» PRO: Bubbles” gamma-ray luminosity requires a source
of protons of power ~1039 erg/s in saturation...this is
the approximate power supplied by nuclear SF to cosmic
rays that escape the GC

» CON: Secondary electrons can supply microwave
synchrotron radiation but predict a too-steep spectrum
to explain the haze

= CON: Structures have to maintain coherence for very
long timescales
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Herschel SPIRE 250 LLm
(Molinari et al. 201.1)
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outflow ablates cold gas
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Complex overlay of
thermal and non-thermal
emission

Gal. plane

HST P-alpha image by
Q.D. Wang

Lang, Morris, Echevarria 1999; 20-cm VLA
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Thomas Siegert Positron Annihilation Observations

60s & 70s
Balloons

1979-1981
HEAO-C

1980-1989
SMM
, e

PP 7Nl 1988-1995

?s ‘? GRIS

R R “ /“" 1991-2000

{ .
N
|
-8
L
T
Lrtzgn 018

S [ . - 2002-?
o t11,!_ N ~ @ &l INTEGRAL
'||i ! %}{Ti# : “

L _-\. A | ( - -

Diffuse, Galactic positron annihilation signal detected for more thar



Gamma Rays from Positron Annihilation

Formation of Positronium Atom (Ps):

-> Triplet state (S=1): parallel spins et s "~
“Ortho-Positronium” o-Ps f‘"‘
Lifetime: t=1.4x107 s e ‘r
3y: continuous spectrum )

> Singlet state (S=0) antiparallel spins et i
“Para-Positronium” p-Ps ;""‘# E crerar hov
Lifetime: t=1.3x10"%s > *ej 7::\\3‘ —ParaPositronium
2y: monoenergetic gamma-ray line (511 kev) —" Y

* Annihilation in Flight (AiF):

Annihilation in Flight (AiF):

Y s
* Annihilation in Flight (AiF):
-> Direct annihilation with E,, (e*) 20
E.n(e*) = E.(e)=0:511 keV line
E...(e*) #/= E, (e) > 0: continuous spectrum ( R

we—,—. -
L L e [ T 1)
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Source Age More QQuantitatively with
Delay Time Distribution

Rylt = vy [ DTD[t — ') SFH|t'] d',

rate of transient star f.ormation
event ‘X’ history
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Summary

»Siegert et al have changed the empirical situation with respect to Galactic positron
annihilation:

»The Galactic disk is a brighter positron source than previously reckoned;
B /D positron luminosity ratio ~ B/D stellar mass ratio
= The nucleus has now been detected as a separate positron source

»Generically, this phenomenology can be explained with a positron source connected to
old stars in the Galaxy

= A single type of transient event — SN1991bg-like supernovae — can supply the requisite
number of positrons in the correct distribution to explain the origin of most Galactic
antimatter

= This scenario is multiply constrained, and also suffices to explain the anomalous
abundance of *Ca, the decay product of the #Ti that births the Galactic positrons, in pre-
solar grains
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COWD-HeWD merger leading to He detonation
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