Looking for Primordial Black Holes as Dark Matter in the CMB

Vivian Poulin
LAPTh and RWTH Aachen University

Based on:
V.P, J. Lesgourgues and P. Serpico
JCAP 1703 (2017) no.03, 043

VP, P. Serpico, F. Calore, S. Clesse & K. Kohri,
arXiv:1707.04206

Rencontres du Vietnam
26.07.2017
Many models in the literature, e.g.:
- From extended inflation models (Hybrid, curvaton, multi-field ...)
 - Garcia-Bellido et al., PRD54, pp. 6040–6058, 1996; Bugaev et al., PRD85, p. 103504, 2012; Kohri et al., PRD87, no. 10, p. 103527, 2013; Kawasaki et al., PRD94, no. 8, p. 083523, 2016; and many more...
- 1st and 2nd order phase transitions can lower the threshold

PBH are created by large density contrast in the early universe when they re-enter the Horizon.

PBH as Dark Matter in the CMB

- PBH are created by large density contrast in the early universe when they re-enter the Horizon.

 Carr, ApJ., 1975

- $\zeta_c = \text{threshold for formation} \approx 1.$

 Harada et al., 1309.4201

- Masse ≈ matter in the Horizon.

- Small scales (i.e. small masses) enter first.

Many models in the literature, e.g.:
- From extended inflation models (Hybrid, curvaton, multi-field ...)

 *Garcia-Bellido et al., PRD54, pp. 6040–6058, 1996; Bugaev et al., PRD85, p. 103504, 2012;
 Kohri et al., PRD87, no. 10, p. 103527, 2013; Kawasaki et al., PRD94, no. 8, p. 083523, 2016; and many more...

- 1st and 2nd order phase transitions can lower the threshold

 Jedamzik & Nemeyer, PRD59, p. 124014, 1999; Rubin et al., JETP, vol. 91, pp. 921–929, 2001
PBHs are great DM candidates

- Do not emit light;
- Non-relativistic;
- Nearly collisionless;
- Formed before BBN;
- They can be probed in many ways!
- They are subjects to many observational constraints ...

MACHOs or WIMPs ??
Could Ligo have detected Dark Matter?

- Surprisingly high masses:
 Stellar population peaks below 15 M☉
 « A new population of black holes »

- Merging rate: 14-158 Gpc⁻³ yr⁻¹
 Compatible with a population of PBH making the Dark Matter!

 S. Bird et al., 1603.00464
 S. Clesse & J. Garcia-Bellido, 1603.05234

LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)
Surprisingly high masses:
Stellar population peaks below 15 M⊙
« A new population of black holes »

Merging rate: $14\text{--}158 \text{ Gpc}^{-3} \text{ yr}^{-1}$
Compatible with a population of PBH making the Dark Matter!

S. Bird et al., 1603.00464
S. Clesse & J. Garcia-Bellido, 1603.05234

This claim is model dependent.
It could be too low...

M. Sasaki et al., 1603.08338
Surprisingly high masses:
Stellar population peaks below 15 M_\odot
« A new population of black holes »

Merging rate: $14 - 158 \text{ Gpc}^{-3} \text{ yr}^{-1}$
Compatible with a population of PBH making the Dark Matter!

S. Bird et al., 1603.00464
S. Clesse & J. Garcia-Bellido, 1603.05234

This claim is model dependent.
It could be too low...

M. Sasaki et al., 1603.08338

How to distinguish their primordial origin?
Impact of the peculiar power spectrum:

- Enhanced adiabatic primordial power spectrum
 => CMB spectral distortions.

 Chluba et al., ApJ. 758 (2012) 76
 Kohri et al., PRD90 (2014) no.8, 083514

- Iso-curvature modes further enhanced by non-gaussianity
 => CMB anisotropies / Large Scale Structures.

 Chisholm, PRD73 (2006) 083504
 Young&Byrnes, JCAP 1504 (2015) no.04, 034
Impact of the peculiar power spectrum:

- Enhanced adiabatic primordial power spectrum
 => CMB spectral distortions.

 Chluba et al., ApJ. 758 (2012) 76
 Kohri et al., PRD90 (2014) no.8, 083514

- Iso-curvature modes further enhanced by non-gaussianity
 => CMB anisotropies / Large Scale Structures.

 Chisholm, PRD73 (2006) 083504
 Young & Byrnes, JCAP 1504 (2015) no.04, 034

Impact of the PBHs:

- PBH of small masses can evaporate into SM particles.

 Carr et al., PRD81 (2010) 104019

- PBH of high masses can accrete matter, leading to photon emission.

 Ali-Haimoud & Kamionkowski, PRD95 (2017) no.4, 043534
PBH & the CMB

Impact of the peculiar power spectrum:
- Enhanced adiabatic primordial power spectrum
 => CMB spectral distortions.

 Chluba et al., ApJ. 758 (2012) 76
 Kohri et al., PRD90 (2014) no.8, 083514

- Iso-curvature modes further enhanced by non-gaussianity
 => CMB anisotropies / Large Scale Structures.

 Chisholm, PRD73 (2006) 083504
 Young & Byrnes, JCAP 1504 (2015) no.04, 034

Impact of the PBHs:
- PBH of small masses can evaporate into SM particles.

 Carr et al., PRD81 (2010) 104019

- PBH of high masses can accrete matter, leading to photon emission.

 Ali-Haimoud & Kamionkowski, PRD95 (2017) no.4, 043534

We revisit evaporation and accretion with an improved treatment
==> leads to stronger & more realistic constraints
E.m. energy injection can modify the ionization and temperature history

\[
\frac{dx_e}{dz} = \frac{1}{(1 + z)H(z)} \left[R_s(z) - I_s(z) - I_X(z) \right]
\]

\[
\frac{dT_M}{dz} = \frac{1}{1 + z} \left[2T_M + \gamma(T_M - T_{CMB}) + K_h \right]
\]

\[I_X(z) \text{ and } K_h(z) \propto \frac{dE}{dV dt}\mid_{\text{dep,c}}\]

The « three levels atom »
Peebles 1968
Zeldovich, Kurt, Sunyaev 1968
E.m. energy injection can modify the ionization and temperature history

\[
\frac{dx_e}{dz} = \frac{1}{(1 + z)H(z)} \left[R_s(z) - I_s(z) - I_X(z) \right]
\]

\[
\frac{dT_M}{dz} = \frac{1}{1 + z} \left[2T_M + \gamma(T_M - T_{CMB}) + K_h \right]
\]

\[I_X(z) \text{ and } K_h(z) \propto \left. \frac{dE}{dV dt} \right|_{\text{dep,c}} \]

Typical parametrization through the \(f_c(z, x_e) \) functions:

\[\left. \frac{dE}{dV dt} \right|_{\text{dep,c}}(z) = f_c(z, x_e) \left. \frac{dE}{dV dt} \right|_{\text{inj}}(z) \]

Slatyer 2015, arXiv:1506.03812

The « three levels atom »

Peebles 1968

Zeldovich, Kurt, Sunyaev 1968
E.m. energy injection can modify the ionization and temperature history

\[
\frac{dx_e}{dz} = \frac{1}{(1+z)H(z)} [R_s(z) - I_s(z) - I_X(z)]
\]

\[
\frac{dT_M}{dz} = \frac{1}{1+z} \left[2T_M + \gamma(T_M - T_{CMB}) + K_h \right]
\]

\[I_X(z) \text{ and } K_h(z) \propto \frac{dE}{dV dt}\bigg|_{\text{dep,c}}\]

Typical parametrization through the \(f_c(z, x_e) \) functions:

\[
\frac{dE}{dV dt}\bigg|_{\text{dep,c}}(z) = f_c(z, x_e) \frac{dE}{dV dt}\bigg|_{\text{inj}}(z)
\]

* Slatyer 2015, arXiv:1506.03812
* Peebles 1968
* Zeldovich, Kurt, Sunyaev 1968

\(f_c(z, x_e) \) is the key quantity, it encodes:

- What fraction of the injected energy is left to interact with the IGM
- How this energy is distributed among each channel: 'heat', 'ionization', 'excitation'
Problematic of accretion onto a point mass M is old: seminal papers focused on accretion by star in an infinite gas cloud.

Hoyle & Lyttleton, 1939, 1940; Bondy & Hoyle 1944; Bondi 1952

Famous result by Bondi derived in the context of spherical accretion

\[
\dot{M}_{\text{HB}} = 4\pi \lambda \rho_{\infty} v_{\text{eff}} r_{\text{HB}}^2 \equiv 4\pi \lambda \rho_{\infty} \frac{(GM)^2}{v_{\text{eff}}^3}
\]
Essential on PBH accretion

Problematic of accretion onto a point mass M is old: seminal papers focused on accretion by star in an infinite gas cloud.

Hoyle & Lyttleton, 1939, 1940; Bondy & Hoyle 1944; Bondi 1952

Famous result by Bondi derived in the context of spherical accretion

$$\dot{M}_{\text{HB}} \equiv 4\pi \lambda \rho_\infty v_{\text{eff}}^2 r_{\text{HB}}^2 \equiv 4\pi \lambda \rho_\infty \frac{(GM)^2}{v_{\text{eff}}^3}$$

This is a « geometrical » result ! Area of an accreting sphere of radius $r_{\text{HB}} = GM/v_{\text{eff}}^2$

what is v_{eff}? No exact calculation exists... Proxy: $v_{\text{eff}}^2 = c_{s,\infty}^2 + v_{\text{rel}}^2$
Problematic of accretion onto a point mass M is old: seminal papers focused on accretion by star in an infinite gas cloud.

Hoyle & Lyttleton, 1939, 1940; Bondy & Hoyle 1944; Bondi 1952

Famous result by Bondi derived in the context of spherical accretion

$$\dot{M}_{HB} \equiv 4\pi \lambda \rho_\infty v_{eff}^2 r_{HB}^2 \equiv 4\pi \lambda \rho_\infty \frac{(GM)^2}{v_{eff}^3}$$

This is a « geometrical » result! Area of an accreting sphere of radius $r_{HB} = GM/v_{eff}^2$

what is v_{eff}? No exact calculation exists... Proxy: $v_{eff}^2 = c_{s,\infty}^2 + v_{rel}^2$

Sound speed in the gas
Problematic of accretion onto a point mass M is old: seminal papers focused on accretion by star in an infinite gas cloud.

Hoyle & Lyttleton, 1939, 1940; Bondy & Hoyle 1944; Bondi 1952

Famous result by Bondi derived in the context of spherical accretion

\[\dot{M}_{\text{HB}} \equiv 4\pi \lambda \rho_\infty v_{\text{eff}} r_{\text{HB}}^2 \equiv 4\pi \lambda \rho_\infty \frac{(GM)^2}{v_{\text{eff}}^3} \]

This is a « geometrical » result ! Area of an accreting sphere of radius $r_{\text{HB}} = GM/v_{\text{eff}}^2$

what is v_{eff}? No exact calculation exists... Proxy: $v_{\text{eff}}^2 = c_{s,\infty}^2 + v_{\text{rel}}^2$

Sound speed in the gas Relative velocity between gas & BH
Essential on PBH accretion

- Problematic of accretion onto a point mass M is old: seminal papers focused on accretion by star in an infinite gas cloud. *Hoyle & Lyttleton, 1939, 1940; Bondy & Hoyle 1944; Bondi 1952*

- Famous result by Bondi derived in the context of spherical accretion:

$$\dot{M}_{HB} = 4\pi \lambda \rho_\infty v_{eff}^2 r_{HB}^2 = 4\pi \lambda \rho_\infty \frac{(GM)^2}{v_{eff}^2}$$

- This is a « geometrical » result! Area of an accreting sphere of radius $r_{HB} = GM/v_{eff}^2$

- What is v_{eff}? No exact calculation exists... Proxy:

$$v_{eff}^2 = c_{s, \infty}^2 + v_{rel}^2$$

 - Sound speed in the gas
 - Relative velocity between gas & BH

- $\lambda \approx 1$: accretion eigenvalue. Take into account gas pressure, interaction with CMB...
Problematic of accretion onto a point mass M is old: seminal papers focused on accretion by star in an infinite gas cloud.

Hoyle & Lyttleton, 1939, 1940; Bondy & Hoyle 1944; Bondi 1952

Famous result by Bondi derived in the context of spherical accretion

\[
\dot{M}_{HB} = 4\pi \lambda \rho_{\infty} v_{\text{eff}}^2 r_{HB}^2 = 4\pi \lambda \rho_{\infty} \frac{(GM)^2}{v_{\text{eff}}^3}
\]

This is a « geometrical » result! Area of an accreting sphere of radius $r_{HB} = GM/v_{\text{eff}}^2$

what is v_{eff}? No exact calculation exists... Proxy: $v_{\text{eff}}^2 = c_{s,\infty}^2 + v_{\text{rel}}^2$

Sound speed in the gas Relative velocity between gas & BH

$\lambda \approx 1$: accretion eigenvalue. Take into account gas pressure, interaction with CMB...

The accreted matter gets heated $T_S \approx 10^9 - 10^{11}$K: bremsstrahlung emission.

\[
L = \epsilon \dot{M}_{HB} c^2 \quad \epsilon \simeq 10^{-3} - 10^{-5} \frac{\dot{M}}{\dot{M}_{\text{edd}}} \quad L_\nu \propto \nu^{-0.5} \exp(-\nu/T_S) \quad \text{Shapiro 1973, 1974}
\]
Problematic of accretion onto a point mass M is old: seminal papers focused on accretion by star in an infinite gas cloud.

\[\text{Hoyle & Lyttleton, 1939, 1940; Bondy & Hoyle 1944; Bondi 1952} \]

Famous result by Bondi derived in the context of spherical accretion

\[\dot{M}_{HB} = 4\pi \lambda \rho_{\infty} v_{eff}^2 r_{HB} = 4\pi \lambda \rho_{\infty} \frac{(GM)^2}{v_{eff}^3} \]

This is a « geometrical » result! Area of an accreting sphere of radius $r_{HB} = GM/v_{eff}^2$

what is v_{eff}? No exact calculation exists... Proxy: $v_{eff}^2 = c_{s,\infty}^2 + v_{rel}^2$

Sound speed in the gas Relative velocity between gas & BH

$\lambda \approx 1$: accretion eigenvalue. Take into account gas pressure, interaction with CMB...

The accreted matter gets heated $T_S \approx 10^9 - 10^{11}$K: bremsstrahlung emission.

\[L = \epsilon \dot{M}_{HB} c^2 \quad \epsilon \approx 10^{-3} - 10^{-5} \frac{\dot{M}}{\dot{M}_{edd}} \quad L_{\nu} \propto \nu^{-0.5} \exp(-\nu/T_s) \quad \text{Shapiro 1973, 1974} \]

This formalism is applied to disk accretion with appropriate values:

\[\lambda \approx 10^{-1} - 10^{-2} \quad \epsilon \approx 10^{-1} - 10^{-3} \frac{\dot{M}}{\dot{M}_{edd}} \quad \text{Review: Narayan&Yuan 2014} \]
Current constraints on accreting PBH

- Until now: CMB constraints obtained with this formalism, assuming spherical accretion holds.

- Exercise is thus to compute the right v_{rel}, λ, and ϵ.

- Ricotti et al, 2007: PBH as 100% of the DM with masses $M > 0.1 M_{\odot}$ are excluded!

- But wrong v_{rel} and ϵ... Ali-Haimoud & Kamionkowski: $M > 100 M_{\odot}$ (conservative case).
 Ali-Haimoud & Kamionkowski, PRD95, no. 4, p. 043534, 2017.
Current constraints on accreting PBH

Until now: CMB constraints obtained with this formalism, assuming spherical accretion holds.

Exercice is thus to compute the right v_{rel}, λ and ϵ.

Ricotti et al, 2007: PBH as 100% of the DM with masses $M > 0.1 M_\odot$ are excluded!

But wrong v_{rel} and ϵ... Ali-Haimoud & Kamionkowski: $M > 100 M_\odot$ (conservative case).

Is spherical accretion a good approximation??

If the accreted gas has a high angular momentum, it cannot fall straight onto the BH.

Energy is dissipated but angular momentum is conserved ==> Accretion disk forms.

How high should be the angular momentum?

=> Keplerian angular momentum for a rotation around the BH at a distance r_D.

$$l_D \simeq r_D v_{\text{Kep}}(r_D) \simeq \sqrt{GMr_D}$$

Now the (specific) angular momentum is simply

\[l \approx \left(\frac{\delta \rho}{\rho} + \frac{\delta v}{v_{\text{eff}}} \right) v_{\text{eff}} r_{\text{HB}} \]

Density gradients perp. to the BH motion

Typical velocity dispersion on small scales
Now the (specific) angular momentum is simply

\[l \simeq \left(\frac{\delta \rho}{\rho} + \frac{\delta v}{v_{\text{eff}}} \right) v_{\text{eff}} r_{\text{HB}} \]

Density gradients perp. to the BH motion

Typical velocity dispersion on small scales

We find that the radius of the disk \(r_D \gg r_S \) if:

\[
\left. \frac{\delta \rho}{\rho} \right|_{k \sim r_{BH}^{-1}} \gg 10^{-4}
\]

\[
\delta v \gg 1.5 \left(\frac{1+z}{1000} \right)^{3/2} \text{ m/s}
\]
Now the (specific) angular momentum is simply

\[l \approx \left(\frac{\delta \rho}{\rho} + \frac{\delta v}{v_{\text{eff}}} \right) v_{\text{eff}} r_{\text{BH}} \]

Density gradients perp. to the BH motion

Typical velocity dispersion on small scales

We find that the radius of the disk \(r_D \gg r_S \) if:

\[\frac{\delta \rho}{\rho} \bigg|_{k \sim r_{\text{BH}}^{-1}} \gg 10^{-4} \]

\[\delta v \gg 1.5 \left(\frac{1+z}{1000} \right)^{3/2} \text{ m/s} \]

This is easily satisfied because of the enhanced power spectrum on small scales!

At \(z=1000 \), \(k_{\text{NL}} \approx 10^3 \text{Mpc}^{-1} \ll k_{\text{BH}} \approx 10^5 \text{Mpc}^{-1} \)

Gong&Kitajima, 1704.04132
Now the (specific) angular momentum is simply
\[l \simeq \left(\frac{\delta \rho}{\rho} + \frac{\delta v}{v_{\text{eff}}} \right) v_{\text{eff}} r_{\text{BH}} \]

Density gradients perp. to the BH motion Typical velocity dispersion on small scales

We find that the radius of the disk \(r_D \gg r_S \) if:
\[\frac{\delta \rho}{\rho} \bigg|_{k \sim r_{BH}^{-1}} \gg 10^{-4} \quad \text{and} \quad \delta v \gg 1.5 \left(\frac{1+z}{1000} \right)^{3/2} \text{m/s} \]

This is easily satisfied because of the enhanced power spectrum on small scales!
At \(z=1000 \), \(k_{\text{NL}} \approx 10^3 \text{Mpc}^{-1} \ll k_{\text{BH}} \approx 10^5 \text{Mpc}^{-1} \)

No exact computation possible because of non-linearity, but this is always true for binary BH.
Now the (specific) angular momentum is simply

\[l \approx \left(\frac{\delta \rho}{\rho} + \frac{\delta v}{v_{\text{eff}}} \right) v_{\text{eff}} r_{\text{HB}} \]

Density gradients perp. to the BH motion

Typical velocity dispersion on small scales

We find that the radius of the disk \(r_D \gg r_S \) if:

\[\frac{\delta \rho}{\rho} \bigg|_{k \sim r_{BH}^{-1}} \gg 10^{-4} \]

\[\delta v \gg 1.5 \left(\frac{1+z}{1000} \right)^{3/2} \text{ m/s} \]

This is easily satisfied because of the enhanced power spectrum on small scales!

At \(z=1000 \), \(k_{\text{NL}} \approx 10^3 \text{Mpc}^{-1} \ll k_{\text{BH}} \approx 10^5 \text{Mpc}^{-1} \)

Gong&Kitajima, 1704.04132

No exact computation possible because of non-linearity, but this is always true for binary BH.

Although spherical accretion leads to conservative constraints, in the early universe, it seems unrealistic!
What disk forms?

- Optimistic: Thin Disk, high radiative efficiency, leads to the strongest constraints.
- Caveat: never observed, probably not realise in nature.

Review: Narayan & Yuan 2014

Shakura & Sunyaev 1973
What disk forms?

- **Optimistic**: Thin Disk, high radiative efficiency, leads to the strongest constraints. Caveat: never observed, probably not realise in nature.
 - *Shakura & Sunyaev 1973*

- More realistic and conservative: Thick disk with inefficient cooling — **ADAF** (Advection Dominated Accretion Flow).
 - Results of numerical simulations confirmed by observations!
 - Relatively low radiative efficiency and accretion rate.

CMB constraints

Quy Nhon, 26.07.2017

Review: Narayan&Yuan 2014
Optimistic: Thin Disk, high radiative efficiency, leads to the strongest constraints.
Caveat: never observed, probably not realised in nature.

More realistic and conservative: Thick disk with inefficient cooling — ADAF (Advection Dominated Accretion Flow).

Results of numerical simulations confirmed by observations!
Relatively low radiative efficiency and accretion rate.

Vivian Poulin - LAPTh/RWTH
PBH as Dark Matter in the CMB

Review: Narayan&Yuan 2014
Ichimaru 1977, Narayan&Yi 1994
Xie&Yuan 2012
Energy deposition function

- Power law shape up to 100 keV energies from synchrotron and bremsstrahlung.
- Depend on PBH mass and accretion rate.

Review: Narayan & Yuan 2014

Delayed recombination, higher freeze-out plateau, early reionization
Impact on the CMB power spectra

- Delayed recombination: shift peaks and damping tail enhanced.
- Early reionization: step-like suppression and reionization bump enhanced.

\[C_{\ell}^{TT} = \frac{1}{2\pi} [\ell(\ell+1)C_{\ell}] \]

\[C_{\ell}^{EE} = \frac{1}{2\pi} [\ell(\ell+1)C_{\ell}] \]

\[M_{PBH} = 30M_\odot, \lambda_{ADAF} = 10^{-2} \]

V.P, J. Lesgourgues and P. Serpico
JCAP 1703 (2017) no.03, 043
Constraints on disk-accreting PBH

VP, P. Serpico, F. Calore, S. Clesse & K. Kohri, arXiv:1707.04206

- We find constraints from two to three orders of magnitude stronger.
- Main uncertainty: relative velocities between PBH and baryons.
- Could be improved thanks to better understanding of PBH/baryons structures.
PBH is a great DM candidate:

- All good properties, can get good relic abundance and many ways to test the scenario.
- Unfortunately there are already many strong constraints.
Take-Home message

PBH is a great DM candidate:
- All good properties, can get good relic abundance and many ways to test the scenario.
- Unfortunately there are already many strong constraints.

I presented CMB constraints on:
- The very high masses — accreting — PBHs: until now all studies have assumed spherical accretion.
- This approximation is unrealistic: a disk should form typically after recombination.
- Conservatives constraints are two orders of magnitude stronger: \(M > 2M_\odot \).
Take-Home message

PBH is a great DM candidate:
- **All good properties**, can get good relic abundance and many ways to test the scenario.
- Unfortunately there are **already many strong constraints**.

I presented CMB constraints on:
- The very high masses — accreting — PBHs: until now all studies have assumed spherical accretion.
- This approximation is unrealistic: *a disk should form typically after recombination*.
- Conservatives contraints are **two orders of magnitude stronger**: $M > 2M_\odot$.

CMB can also constrain evaporating PBH: *Poulin et al.*
- They are **as good as or better** than EGB constraints.

Poulin et al.

JCAP 1703 (2017) no.03, 043
Take-Home message

PBH is a great DM candidate:
- All good properties, can get good relic abundance and many ways to test the scenario.
- Unfortunately there are already many strong constraints.

I presented CMB constraints on:
- The very high masses — accreting — PBHs: until now alls studies have assumed spherical accretion.
- This approximation is unrealistic: a disk should form typically after recombination.
- Conservatives contraints are two orders of magnitude stronger: \(M > 2M_\odot \).

CMB can also constrain evaporating PBH:
- They are as good as or better than EGB constraints.

CMB can also constrain merging rate of PBH! (see my poster)
Take-Home message

PBH is a great DM candidate:
- All good properties, can get good relic abundance and many ways to test the scenario.
- Unfortunately there are already many strong constraints.

I presented CMB constraints on:
- The very high masses — accreting — PBHs: until now alls studies have assumed spherical accretion.
- This approximation is unrealistic: a disk should form typically after recombination.
- Conservatives contraints are two orders of magnitude stronger: $M > 2M_\odot$.

CMB can also constrain evaporating PBH:
- They are as good as or better than EGB constraints.

CMB can also constrain merging rate of PBH! (see my poster)

Next step:
- Improve understanding of non-linear PBH structures and the capture of baryons.
- Revisit constraints on the power spectrum itself.
Thanks for your attention!
PBH are created by large density contrast in the early universe;

Credit: Sebastien Clesse
PBH are created by large density contrast in the early universe;

When a local density fluctuation exceeds some threshold value, it collapses gravitationally and form a primordial black hole.

\[\zeta_c = \text{threshold for formation} \approx 1 \]

Harada et al., 1309.4201

Credit: Sebastien Clesse
PBH are created by large density contrast in the early universe;

- When a local density fluctuation exceeds some threshold value, it collapses gravitationally and forms a primordial black hole.
- Small-size density fluctuations collapse earlier and form less massive PBHs.

\[\zeta_c = \text{threshold for formation} \approx 1 \]

Credit: Sebastien Clesse
PBH are created by large density contrast in the early universe;

- When a local density fluctuation exceeds some threshold value, it collapses gravitationally and forms a primordial black hole.
- Small-size density fluctuations collapse earlier and form less massive PBHs.
- Large density fluctuations collapse later and form more massive PBHs.

\[\zeta_c = \text{threshold for formation} \approx 1 \]

Harada et al., 1309.4201

Credit: Sebastien Clesse
PBH are created by large density contrast in the early universe;

When a local density fluctuation exceeds some threshold value, it collapses gravitationally and form a primordial black hole.

Small-size density fluctuations collapse earlier and form less massive PBHs.

Large density fluctuations collapse later and form more massive PBHs.

$\zeta_c = \text{threshold for formation} \approx 1$

If fluctuations are gaussian, fraction of PBH at formation is:

$$\beta \equiv \frac{\rho_{PBH}}{\rho_{total}} \bigg|_{\text{formation}} \approx \int_{\zeta_c}^{\infty} P(\zeta) \, d\zeta,$$

$$\beta \simeq \frac{1}{\sqrt{2\pi}\sigma} \int_{\zeta_c}^{\infty} \exp\left(-\frac{1}{2} \frac{\zeta^2}{\sigma^2}\right) \, d\zeta = \frac{1}{2} \text{erfc}\left(\frac{\zeta_c}{\sqrt{2}\sigma}\right).$$

$\zeta_c \approx 1 \implies \sigma(k) = P(k)^{1/2} \text{ of } \approx 1$

Harada et al., 1309.4201

Credit: Sebastien Clesse
Rough power law shape from synchrotron and bremsstrahlung;
Depend on PBH mass (right panel) and accretion rate (left panel)
Energy deposition function

- Heat
- Spherical accretion
- Ionization
- 30 M_\odot
- 1000 M_\odot

Energy deposition function $f_c(z)$

$1+z$

10^{-4}
10^{-3}
10^{-2}
10^{-1}
10^0
\[
\frac{dn}{dM} = \frac{1}{\sqrt{2\pi}\sigma M} \exp\left(\frac{-\log_{10}(M/\mu_{\text{PBH}})^2}{2\sigma_{\text{PBH}}^2}\right)
\]
Density contrast

\[\frac{\delta \rho}{\rho} \bigg|_{k \sim r_{BH}^{-1}} \gg 10^{-4} \]

- No IC Modes
- \(M_{PBH} = 1 \, M_\odot \)
- \(M_{PBH} = 100 \, M_\odot \)
- \(M_{PBH} = 10^4 \, M_\odot \)

\(z = 1000 \)
Constraints for WIMP DM

Bringmann, Scott & Akrami 1110.2484
In the L.O.S formalism:

(Here, I only recall computation of Temp. anisotropies at 1st order, Newt. gauge)

\[C_{\ell}^{\text{TT}} = \int \frac{dk}{k} \mathcal{P}_{R}(k) [\Theta_{\ell}(\tau_{0}, k)]^{2} \]

\[\Theta_{\ell}(\tau_{0}, k) = \int_{\tau}^{\tau_{0}} d\tau S_{T}(\tau, k) j_{\ell}(k(\tau_{0} - \tau)) \]

\[S_{T}(k, \tau) \equiv g(\Theta_{0} + \psi) + (gk^{-2}\theta_{B})' + e^{-\kappa}(\phi' + \psi') + \text{polarisation} \]

\[g(\tau) \equiv -\kappa' e^{-\kappa} \quad \kappa(\tau) = \int_{\tau}^{\tau_{0}} d\tau \sigma_{Tan} n_{e} x_{e} \]

Temperature power spectrum

Transfer function

Temperature source function

Visibility function, optical depth
From perturbation to power spectrum

In the L.O.S formalism:
(Here, I only recall computation of Temp. anisotropies at 1st order, Newt. gauge)

\[C_\ell^{TT} = \int \frac{dk}{k} \mathcal{P}_R(k) \left[\Theta_\ell(\tau_0, k) \right]^2 \]

\[\Theta_\ell(\tau_0, k) = \int_\tau^{\tau_0} d\tau S_T(\tau, k) j_\ell(k(\tau_0 - \tau)) \]

\[S_T(k, \tau) \equiv g(\Theta_0 + \psi) + (g k^{-2} \theta_B)' + e^{-\kappa}(\phi' + \psi') + \text{polarisation} \]

\[g(\tau) \equiv -\kappa' e^{-\kappa} \]

\[\kappa(\tau) = \int_\tau^{\tau_0} d\tau \sigma T an_e x_e \]

Temperature power spectrum

Transfer function

Temperature source function

Visibility function, optical depth

e.m. energy injection: modify visibility function \(g \) and optical depth \(\kappa \)

see e.g. textbook « The Cosmic Microwave Background » by R. Durrer; « Neutrino Cosmology » By Lesgourgues et al. or original papers Seljak & Zaldarriaga APJ. 469 (1996) 437-444; Kamionkowski et al. PRD55 (1997) 7368-7388
BHs emit SM particles with a black body spectrum at a temperature

\[T_{\text{BH}} = \frac{1}{8\pi GM} \simeq 1.06 \left(\frac{10^{10} \text{g}}{M} \right) \text{TeV} \]

\textit{nb: Our formalism is reliable for } M < 10^{17} \text{g}

BHs emit SM particles with a black body spectrum at a temperature

\[T_{\text{BH}} = \frac{1}{8\pi GM} \approx 1.06 \left(\frac{10^{10} \text{g}}{M}\right) \text{TeV} \]

\(\text{nb: Our formalism is reliable for } M < 10^{17} \text{g} \)

Energy injection rate is proportional to the mass-loss rate

\[\frac{dE}{dV \, dt}_{\text{ini, PBH}} = \frac{\Omega_{\text{DM}} \rho c^2 (1+z)^3 f_{\text{PBH}} c^2}{M_{\text{PBH}}} \frac{dM}{M_{\text{ini}} \, dt}_{\text{e.m.}} \]

\[\frac{dM}{dt} = -5.34 \times 10^{-15} \mathcal{F}(M) M^{-2} \text{ g s}^{-1} \]
Evaporating PBH

- BHs emit SM particles with a black body spectrum at a temperature

\[T_{BH} = \frac{1}{8\pi GM} \approx 1.06 \left(\frac{10^{10} g}{M} \right) \text{TeV} \]

*nb: Our formalism is reliable for } M < 10^{17} g

- Energy injection rate is proportional to the mass-loss rate

\[\frac{dE}{dV dt}_{\text{ini, PBH}} = \frac{\Omega_{DM} \rho c^2 (1 + z)^3 f_{PBHc^2} dM}{M_{PBH}} \]

\[\left. \frac{dM}{dt} \right|_{\text{e.m.}} = -5.34 \times 10^{-15} F(M) M^{-2} \text{ g s}^{-1} \]

- Constraints on evaporating PBH

\[M_{PBH} = 10^{15} g, \quad M_{PBH} = 5 \times 10^{16} g \]

Energy deposition function \(f_c(z) \)

- Ionization

- Heating

Ionization fraction \(x_e(z) \)

- \(f_{PBH} = 1 \), \(M_{PBH} = 5 \times 10^{16} g \)

- \(f_{PBH} = 10^{-7} \), \(M_{PBH} = 10^{15} g \)

- \(f_{PBH} = 10^{-8} \), \(M_{PBH} = 5 \times 10^{13} g \)

- No evaporating PBH

\(z_{reio} = 8.24 \)
CMB dominates at low masses and is very competitive until $3 \times 10^{16} \text{g}$!
Constraints on « monochromatic » population

Extrapolation to broad mass spectrum can be non-trivial...

B. Carr et al., 1705.05567