

Exploring the Dark Universe

Review on searches for light dark matter at fixed target electron accelerators

Mariangela Bondì

on behalf of the BDX collaboration

25 July 2017

Hidden Sectors

Is it made by a "Dark Sector" of new particles and interactions ?

A Hidden Sector not charged under SM gauge groups :

- Light Dark Matter χ in MeV GeV mass range
- "New" interaction between LDM and SM particles in order to be compatible with the DM thermal origin
- Can explain some puzzling observations

Possible connection between Hidden sector and SM: "Vector" portal

Consider a theory in which nature contains an additional Abelian gauge symmetry U'(1) B. Holdom, Phys. Lett., B166:196-198, 1986

$$\mathcal{L} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F'_{\mu\nu} F_{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} + g_D A'_{\mu} J^{\mu}_{\chi} + e A_{\mu} J^{\mu}_{\rm EM}$$

This gives rise to a Kinetic Mixing term where the photon mixes with a new gauge boson ("Dark/Heavy Photon" or A') through the interactions of massive fields:

Mixing induces an effective weak coupling se to electric charge

A' acts as a "portal" between the SM and the new sector

Dark Photon production

Since dark photons couple to electric charge, they can be produced through.....

A' can be produced in electron collision on target by:

- Bremsstrahlung eN -> eNA'. In a fixed target configuration the A' is produced very forward, carrying most of the beam energy, while e⁻ emerges at a larger angle
- Annihilation -> e^+e^- -> $\gamma A'$
- Meson decays

Dark photon decays

A broad international program of accelerator experiments is currently focused on exploring light dark matter and associated new force

Experimental approaches

Direct dark photon searches: focused on identifying the mediator through its decay into SM particles. The production mechanism is $eZ \rightarrow eZA'$ or neutral meson decays, and the mediator is reconstructed through its leptonic decays $A' \rightarrow e^+e^-$

Missing mass: The DM is produced in exclusive reactions and identified as a narrow resonate over a smooth background in the recoil mass distribution

Missing momentum/energy: The DM is produced in $eZ \rightarrow eZ(A' \rightarrow XX)$ and identified through the missing energy/momentum carried away by the escaping DM particles

Electron Beam Dump: The DM is produced via $eZ \rightarrow eZ(A' \rightarrow XX)$ and typically detected via $eX \rightarrow eX$ or NX-> NX scattering in a downstream detector

Direct Dark Photon search

- Fixed target experiment at HALL A @ JLAB
- Detection strategy is mA' bump hunt
- Engineering run to demonstrate method done (2010)
- \odot Sensitivity: $\epsilon^2 > 10^{-7}$ in the mass range 60 MeV < $m_{A'} < 550$ MeV
- Full approval from the laboratory for a 180-day run with different beam energy configurations
- Two data-taking periods have been completed: in 2015, 1.7 days (10 mC) at 1.06 GeV and in 2016, 5.4 days (92.5 mC) at 2.3 GeV

Missing Mass

It aims to use annihilation production ($e+e- \rightarrow x(A-XX)$) and missing mass searches.

PADME experiment

- Small scale fixed target experiment
- 550 MeV e⁺ @ BTF in INFN-LNF
- Thin active diamond target
- Charged particle detectors
- Calorimeter
- Expected to collect >= 10^{13} positron on target

Sensitivity: $\epsilon^2 > 10^{-7}$ in the mass range $m_{A'} < 24$ MeV in a complete model independent way (Independent from the A' decay mechanism, A' lifetime, nature and mass of the dark matter).

Missing momentum/energy

J. Mans, EPJ Web of Conferences 142, 01020 (2017)

LDMX collaboration: https://confluence.slac.stanford.edu/display/MME/Light+Dark+Matter+Experiment

- Missing momentum experiment
- A Low current, multi-GEV e- beam with high-repetition rate
- The experimental signature consists of a soft wide angle scattered electron, characteristic of DM production at an electron fixed-target reaction, plus missing energy

e⁻ - Beam dump experiment

1 Step: LDM production

- Xs produced via A' emission and invisible decay
 - ➡ GeV high intensity e- beam

2 Step: LDM detection

• X scatter off nucleons, nuclei, or electrons in the detector volume, giving rise to a detectable signal.

the eternal fight in physics: signal vs background

The Beam Dump eXperiment (BDX)

Past e- beam dump experiment: E137 @ SLAC PRL 113, 171802 (2014)

LPM results are a re-analysis of old data the experiment itself was not optimized for this research

An optimized e- beam-dump experiment can explore new territories in the LDM space: BDX

BDX @ JLAB

- High electron beam current ~ 65 μA (integrated charge
 10²² EOT in 41 weeks)
- ✓ Energy beam available: 11 GeV
- Parasitic to experimental program. Use electrons that are otherwise thrown away.
- ✓ New underground experimental Hall

BDX detector

14

BDX prototype

- Cosmic background measured with the BDX detector prototype at INFN -CT and INFN -LNS, with similar overburden of the JLAB configuration
- Geant4 simulations (GEMC framework) in very good agreement with data
- The majority of cosmic muons are detected and rejected by the two veto detectors
- Cosmogenic background eliminated with Veto anticoincidence and Ethresh>0.3 GeV: results obtained by conservatively extrapolating from the lower-E, nonzero counts region, projecting to the JLAB setup

• Cosmic background measured with the BDX detector prototype at INFN -CT and INFN -LNS, with similar overburden of the JLAB configuration

Geant4 simulations (GEMC framework) in very good agreement with data

- The majority of cosmic muons are detected and rejected by the two veto detectors
- Cosmogenic background eliminated with Veto
 anticoincidence and Ethresh>0.3 GeV: results obtaine
 by conservatively extrapolating from the lower-E, non
 zero counts region, projecting to the JLAB setup

16

- Cosmic background measured with the BDX detector prototype at INFN -CT and INFN -LNS, with similar overburden of the JLAB configuration
- Geant4 simulations (GEMC framework) in very good agreement with data
- The majority of cosmic muons are detected and rejected by the two veto detectors
- Cosmogenic background eliminated with Veto anticoincidence and Ethresh>0.3 GeV: results obtaine by conservatively extrapolating from the lower-E, nor zero counts region, projecting to the JLAB setup

16

- Cosmic background measured with the BDX detector prototype at INFN -CT and INFN -LNS, with similar overburden of the JLAB configuration
- Geant4 simulations (GEMC framework) in very good agreement with data
- The majority of cosmic muons are detected and rejected by the two veto detectors
- Cosmogenic background eliminated with Veto anticoincidence and Ethresh>0.3 GeV: results obtained by conservatively extrapolating from the lower-E, nonzero counts region, projecting to the JLAB setup (800 CsI(Tl) crystals)

<u>Cosmogenic background is negligible</u> with high-energy threshold. It will be measured on-site when beam is off

Beam-related backgrounds: GEANT4 vs FLUKA

The interaction of the 11 GeV electron beam in the dump was simulated and the flux of secondaries was studied as a function of the distance from the dump

Photon and neutron cascades absorbed in shielding

- Muons ranged out in Fe
- Neutrinos survives to the detector -> For a simulated statistics of 2.2×10⁸ EOT we obtained, after all rejection cuts and extrapolation to 10²² EOT ~ 10 v.

<u>Neutrino irreducible background</u> is the ultimate limitation for BDX.

BDX @ JLAB: Reach

BDX is an optimized beam-dump experiment that can be conclusive for some Light Dark Matter scenarios. Obtained results will guide future second-generation experiments

Summary

Dark matter in the MeV-to-GeV range is largely unexplored.

• Growing worldwide interest for LDM searches: many on-going experiments and future initiatives

• Beam Dump experiment at JLab: search for Dark sector particles in the 1 ÷ 1000 MeV mass range.

✓ Full proposal submitted to JLab PAC 44 – conditionally approved: to run parasitically at Jefferson Lab for 41 weeks at ~11 GeV, which will allow it to collect ~10²² electrons on target.

 \checkmark BDX can be 10-100 times more sensitive than previous experiments

✓ BDX update submitted to JLAB-PAC45: Test plan to measure muon flux behind HALL A beam dump to validate MC

BDX can produce important physics results, exploring unknown territories in the LDM space, and providing directions for future activities in this field

Beam-related µ: on-site measurement

Measurement campaign to characterize the flux of high-energy μ produced in the Hall-A beam dump. GOAL: validate MC simulations

- Measure the muon flux behind the Hall A beam-dump in 2 different positions (B and C) with BDX-HODO
- BDX-HODO: 1 CsI(Tl) coupled 6x6 mm² Hamamatsu S13360-6025 and sandwiched between a set of segmented plastic scintillators.
- From the FLUKA (GEANT4) simulations a drop in rate by about one order of magnitude when moving from one location to the next
- Rate of beam-on muons measured by BDX-Hodo are expected to be sizable for a beam current of 10 μA:
 ~3.7kHz for B and ~0.5kHz for C.

Hall A Beam Dump / C1

