Noble liquid detectors near the single-electron limit

Adam Bernstein, Rare Event Detection Group Leader, Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory

On behalf of the nascent U_A,(1) collaboration LBL, UCSD, Purdue, LLNL, Stonybrook, CERN...

13th Rencontres du Vietnam - Exploring the Dark Universe

July 23 2017

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

- Dark matter candidates old and new
- A Standard Model standard candle
- U_A(1): A modest (ly sized) proposal
- Turning your back on the greatest invention since sliced bread
- Energy calibration in the few electron regime
- Few-electron noise in noble liquids

Fiducial mass – 10 kg

The Dark Sector – gravitationally interacting particles with no Standard Model charge, consistent with astrophysical evidence for Dark Matter

Weakly interacting massive particles

'WIMPs' – ~100 GeV particles with neutrino-level cross sections

Nuclear scatter

Interacts coherently with nuclei

Phase space thoroughly probed in the 50-500 GeV range by **LUX** and others

LZ will approach/breach the solar neutrino coherent scatter noise floor

Dark Sectors Workshop arxiv:1608.08632

Some other viable Dark Sector interactions

Standard Model Photon \rightarrow A <u>Dark photon \rightarrow A'</u> the exchange particle for WIMPS or other DM particles ?

shell e- scatter

e⁻ absorption

scatters incoherently from or is absorbed by shell electrons

Phase space already probed by LUX, XENON-10, XENON-100

Low cost, fast $U_{A'}(1)$ experiment may probe more deeply than prior expts.

WIMP interactions look a lot like a Standard Model process that does have a (weak) charge

 Standard Model: (fast, light, Z⁰ mediated, blind to charge and flavor, coherent)

Coherent Neutrino Nucleus Scattering

 $\lambda \sim a \text{ few } fm \quad M = \sim 1 \text{ meV}$

 WIMP: (slow, heavy, unmediated, blind to charge and flavor, coherent)

WIMP-Nucleus Scattering

 $\lambda \sim a \text{ few } fm \quad M = \sim 100 \text{ GeV}$

 $U_{A'}(1)$ – a modestly sized proposal to observe very low energy recoils in xenon UA1 experiment $\longrightarrow U_{A'}(1)$ experiment

Discovered W and Z bosons, won Nobel prize

Discovery of A', the dark photon ?

The $U_{A'}(1)$ experiment consists of a ~10 kg dual-phase xenon detector

Purdue, UCSD, LBL, LLNL are involved so far.. Others anticipated and welcomed

What kind of dark sector sensitivity might $U_{A'}(1)$ achieve ?

Lawrence Livermore National Laboratory Plots/estimates courtesy R. Essig, Stonybrook Univ

10 kg of xenon – or argon - also provides a healthy coherent scatter rate at a typical nuclear reactor

Ar-39 dominates in natural argon but can be suppressed (Savarese, Fri. 4 pm) negligible in xenon

~3 GWt reactor ~25 meter standoff ~10 meter depth

```
Argon (Xenon): ~25 (6) cts/day
```

But why make a reactor coherent scatter measurement ?

- 1. First detection ever, an important physics result
- 2. Close dark matter analog
- 3. new monitoring tool for nonproliferation an LLNL priority
- 4. Experimental tour-de-force !

Dual-phase noble liquid Time Projection Chambers

 primary or SI scintillation (prompt photons generated in liquid start the TPC clock)

and:

- secondary or **S2** scintillation (delayed electrons, each converted to 10-100 photons in gas blanket)
- Good electron drift properties
- Large self-shielded target mass
- 3-D signal localization to ~I mm
- Powerful discrimination between nuclear and electromagnetic recoils S1/S2 ratio differs for nuclear/E&M recoils
 U_A(1) would sacrifice these properties to reduce energy thresholds

Giving up on the best part of xenon TPCs by ignoring primary 'S1' scintillation

LUX example: Retain efficiency at low threshold using only the charge (S2) signal

First proposed

Hagmann and Bernstein 2004 – arXiv:0411004v1

'Two-Phase Emission Detector for Measuring Coherent Neutrino-Nucleus Scattering' A recent application

Essig et. al, 2011 – arxiv:1206.2644

'First Direct Detection Limits on sub-GeV Dark Matter from XENON10'

To succeed we must characterize signal strengths, and noise, in the 0 – 1 keV region – about 1-20 liquid electrons

Sub-keV measurements of <u>electromagnetic</u> recoils have already been made in argon and xenon

LLNL results circa 2013-2014

Yale/LBL/UCB results circa 2016-17 E. Boulton et. al arxiv 1705.08958

Even after LUX in-situ <u>nuclear</u> recoil ionization yield measurements, uncertainty remains at the lowest energies

Lawrence Livermore National Laboratory

Plot courtesy B. Lenardo UC Davis and LLNL

Physics reach depends on the ionization yield (e⁻/keV) results and achievable threshold

Lawrence Livermore National Laboratory

Plot courtesy B. Lenardo UC Davis and LLNL

Yield measurements in the few electron regime remain essential

Univ. provided by Prof. Phil Barbeau

LLNL Xe Detector Assembly

Assuming we can calibrate signal strengths, we must still confront noise..

At thresholds ~< 1keV or ~1-10 e^{-} , we enter **a new domain**:

Physics-induced signals are comparable to intrinsic excitations in detector materials – the detector itself is the background, not just external radiation !

LUX shows evidence for photoionization of bulk impurities, and release of electrons at the gas-liquid boundary

Different X-Y position patterns can be identified for different stages of electron emission:

- Prompt electron emissions from bulk photoionization
- Delayed electrons emissions from liquid surface

Lawrence Livermore National Laboratory

Plots courtesy J. Xu And the LUX collaboration

SE-X-Y, t < 325 us

Time

Some emissions are neither time nor space correlated with prior energy depositions

The distribution of fewelectron events 200 ms after small, isolated energy depositions is **not** highly space or time correlated with a prior event..

Not seen to come from grid defects or "hot spots"...

Where are these events coming from ?

The Malter effect in noble liquids (?)

- The Malter effect is enhanced e- emission in the presence of dielectric layers on metals, due to accumulation of positive charge on the dielectric surface
- Layers of solid xenon are observed to form on metals immersed in liquid xenon (and He, Ne, Ar)
- Photo-induced electron emission (PIEE) is observed in rare element solids

Positive ion accumulation at the liquid xenon-metal boundary may result in <u>correlated emissions</u> of a few electrons

Mitigation strategies for few-electron noise can be explored readily in available small detectors

- ? Increase extraction field may reduce trapped electrons at the liquid gas interface
- ? Apply AC field at the cathode to de-trap positive ions (local, does not disrupt drifting electrons)
- ? Apply an infrared pulse to liberate trapped electrons

We will explore these noise suppression techniques in the coming year as part of the $U_{A'}(1)$ effort

Summary

- Sub-kev thresholds permit exploration of new dark sector phase space with relatively small detectors
- The U_A (1) collaboration is well positioned to explore this new phase space with a 10 kg xenon detector
- Low energy calibrations and noise studies will help us explore the light mass particle regime – and possibly extend the reach of LZ beyond its baseline sensitivity
- Reactors provide high statistics sample of (anti)neutrino scatters that closely mimic low-mass WIMPs

In LUX, **photo-ionization in the bulk liquid** can be timecorrelated with a prior scintillation or ionization event

- Xe scintillation light can ionize impurities in the bulk liquid
- Produced by both scintillation (S1) and ionization (S2) light
- Time delay up to full drift time in the detector

