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Outline

Dark matter candidates old and new

A Standard Model standard candle

U,(1): Amodest (ly sized) proposal

Turning your back on the greatest invention since sliced bread
Energy calibration in the few electron regime

Few-electron noise in noble liquids o
Fiducial mass — 5600 kg

. &

Fiducial mass — 145 kg

Fiducial mass — 10 kg

Fiducial mass — 5.4 kg

XENON-10: (2007) LUX: (2013) LZ: (2019 commissioning) Ua(1) (2017)
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The Dark Sector — gravitationally interacting particles with no Standard
Model charge, consistent with astrophysical evidence for Dark Matter

Weakly interacting massive particles Some other viable Dark Sector interactions

‘WIMPs’ — ~100 GeV particles with
neutrino-level cross sections

X

Nuclear scatter

Interacts coherently with nuclei

Phase space thoroughly probed in the
50-500 GeV range by LUX and others

LZ will approach/breach the solar
neutrino coherent scatter noise floor

Dark Sectors Workshop arxiv:1608.08632

Standard Model Photon = A
Dark photon 2> A

the exchange particle for WIMPS or
other DM particles ?

shell e~ scatter e~ absorption

scatters incoherently from or is
absorbed by shell electrons

Phase space already probed by LUX,
XENON-10, XENON-100

Low cost, fast U,.(1) experiment may
probe more deeply than prior expts.
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WIMP interactions look a lot like a Standard
Model process that does have a (weak) charge

= Standard Model: (fast, light, Z°
mediated, blind to charge and

flavor, coherent)

Coherent Neutrino Nucleus Scattering

v+ Xe—=v+ Xe

__________________

\e\ Z0
NN
\ \

\\\\ NN

%)

A~afewfm M=~1meV

N

= WIMP: (slow, heavy, unmediated,
blind to charge and flavor, coherent)

WIMP-Nucleus Scattering

X+ Xe— x+ Xe

A~afewfm M=~100 GeV
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U.(1)— a modestly sized proposal to observe very

low energy recoils in xenon
UA1 experiment -> U,(1) experiment

Discovered W and Z Discovery of A, the

bosons, won Nobel prize dark photon ?

The U,(1) experiment consists of a ~10 kg dual-phase xenon detector

Purdue, UCSD, LBL, LLNL are involved so far.. Others anticipated and welcomed
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What kind of dark sector sensitivity
might U,(1) achieve ?

Heavy Dark Photon model Light Dark Photon model
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Counts per day per 10 kg Ar

10 kg of xenon — or argon - also provides a healthy

Ar-39 dominates in natural argon

but can be suppressed (Savarese, Fri. 4 pm)
negligibl

100

10

e in xenon

Betas fram “Ar decay-:

MNeutrinos

Comptons with 2 cm Pb shield

- Adapted from
| arXiv:0411004

eutrons with 10 cm poly shield:

coherent scatter rate at a typical nuclear reactor

~3 GWt reactor
~25 meter standoff
~10 meter depth

— Argon (Xenon): ~25 (6) cts/day

But why make a reactor coherent scatter

measurement ?

1. First detection ever, an important physics
result

umber of electrons

4 e threshold

. Close dark matter analog

2
1 i i 2 PR T 1 ' i
1 / 10 10 3. new monitoring tool for nonproliferation
N

an LLNL priority
4. Experimental tour-de-force !
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Dual-phase noble liquid Time Projection Chambers

ary or S| scintillation

i, = e y - S2 (charge)
and: \
secondary or S2 scintillation 1‘ ‘
(delayed electrons, each converted 91 Drift time
. : § 5 indicates depth
to 10-100 photons in gas blanket)
= Good electron drift properties . S1(light)

= large self-shielded target mass—
= 3-D-signalHeecalization-toe~mm — ionization electrons

NN UV scintillation photons (~175 nm)
u P ﬁ I I. L L | L I
nuclear and electromagnetic recoils S1/S2 ratio differs for nuclear/E&M recoils

U, (1) would sacrifice these properties to reduce energy thresholds
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Giving up on the best part of xenon TPCs by
ignoring primary ‘S1’ scintillation

LUX example: Retain efficiency
at low threshold using only the
charge (S2) signal

Efficiency

1
1

| LUX analysis range

/7" $2 efficiency (red)
: S1 efficiency (green)
combined S1+S2 (blue)
All cuts (black)

adapted from P. Sorensen
Lake Louise, 2/17
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Nuclear recoil energy (keV)

n2

Counts per day in 10 kg Ar

First proposed

Hagmann and Bernstein
2004 — arXiv:0411004v1

“Two-Phase Emission
Detector for Measuring
Coherent Neutrino-
Nucleus Scattering’

-
o
o

Betas from Ar decay

[ Neutrinos
INEREEN Comptans with 2 cm Ph shield

eutrons with 10 cm poly shield

i

1
10 100

Number of electrons

-
o

-

-

A recent application

Essig et. al,
2011 — arxiv:1206.2644

‘First Direct Detection
Limits on sub-GeV Dark
Matter from XENON10’

Efficiency Counts/0.1 electrons

05 1 15 2 25 3 35 4

Number of electrons
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To succeed we must characterize signal strengths, and
noise, in the 0 — 1 keV region — about 1-20 liquid
electrons
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Counts

Sub-keV measurements of electromagnetic recoils have already been made

in argon and xenon

Argon Xenon
140 arXiv: 1301.4290v2 | arxiv 1705.08958
37Ar K-shell EC Q0L ‘
120 2.82 keV 55Fe Mn Kol Ka2 . +
u=530p.e. 5.89 keV > 5
o=11% u =768 p.e. é TOb o
100 M %7Ar L-shell EC o=12% b
0.27 keV 5
£ 60
so4 K
9
60 SFeMnKpiKps | T |
6.49 keV 2
] > 20
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LLNL results circa 2013-2014

Yale/LBL/UCB results circa 2016-17
E. Boulton et. al arxiv 1705.08958
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Even after LUX in-situ nuclear recoil ionization yield
measurements, uncertainty remains at the lowest energies

arxiv:1608.05381
0.7 keVr - lowest measured yield value
from the LUX experiment
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These extrapolated charge yields are consistent
with the latest LUX and world data for xenon
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Counts above threshold/kg/day
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Physics reach depends on the ionization yield
(e-/keV) results and achievable threshold

3 GeV WIMP-nucleus

>4 e threshold: ~15x rate difference

Note similarities

jonization
gistributions

in these cumulative
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Reactor antineutrino CS

>4 e~ threshold: ~10x rate difference
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negligible effect
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Yield measurements in the few electron regime

Sub-keV nuclear
recoil calibration study
at LLNL

remain essential

neutron recoil in
liquid scintillator detector
determines energy
deposition in dual

LLNL Xe Detector Assembl

phase detector

Thin LiF target -7 ol

I/
- Neutron recoil in Xe = E

dual-phase detector y -‘ I

Pulsed low energy neutron beam at Duke
Univ. provided by Prof. Phil Barbeau

LLNL-PRES-xxxxxx
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Assuming we can calibrate signal strengths,
we must still confront noise..
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electrons extracted from liquid xenon

Xenon10 S2-only analysis, arXiv.1011.6439

At thresholds ~< 1keV or ~1-10 e, we enter a new domain:

Physics-induced signals are comparable to intrinsic excitations in
detector materials — the detector itself is the background, not just
external radiation !
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LUX shows evidence for photoionization of bulk impurities, and release of
electrons at the gas-liquid boundary

Different X-Y position patterns can be identified for
different stages of electron emission:

= Prompt electron emissions from bulk photoionization
= Delayed electrons emissions from liquid surface

® S2 positions % single electron positions

E

A

>
20

SE-X-Y,t= 0.00 ms

10

-10

111 1 | 111 1 | 111 1 | | I - | 111 1 | 111 1
-20 -10 0 10 20
X (cm)

Top-down (X-Y) view of single electron distribution

(cm)

> 20F

[ SE-X-Y,t<325us

Time
correlated
prompt
events
(bulk)

Position
correlated
delayed
events
(surface)

Plots courtesy J. Xu

Lawrence Livermore National Laboratory And the LUX collaboration
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Some emissions are neither time nor space correlated
with prior energy depositions

e S2 positions —i— single electron positions

e £ ep x.
The distribution of few- g pE-X-Y, 200 ms

electron events 200 ms after _
small, isolated energy 10
depositions is not highly
space or time

correlated with a prior event..

Not seen to come from grid b
defects or “hot spots”... o X o)

Where are these events coming from ?
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The Malter effect in noble liquids (?)

The Malter effect is enhanced e- emission in the

. . A few monolayers Positive Xe ions from
presence of dielectric layers on metals, due to of Xe ice previous ionizations
accumulation of positive charge on the dielectric surface | @ _© @

@ /®
Layers of solid xenon are observed to form on metals \

immersed in liquid xenon (and He, Ne, Ar)

Photo-induced electron emission (PIEE) is observe:
in rare element solids

Positive ion accumulation at the liquid xenon-metal boundary may
result in correlated emissions of a few electrons

Lawrence Livermore National Laboratory L res e



Mitigation strategies for few-electron noise can
be explored readily in available small detectors

? Increase extraction field — may reduce trapped

electrons at the liquid gas interface

2 Apply AC field at the cathode to de-trap positive
lons (local, does not disrupt drifting electrons)

?  Apply an infrared pulse to liberate trapped
electrons

We will explore these noise suppression techniques
in the coming year as part of the U,.(1) effort
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Summary

Sub-kev thresholds permit exploration of new dark sector
phase space with relatively small detectors

The U,.(1) collaboration is well positioned to explore this
new phase space with a 10 kg xenon detector

Low energy calibrations and noise studies will help us
explore the light mass particle regime — and possibly
extend the reach of LZ beyond its baseline sensitivity

Reactors provide high statistics sample of (anti)neutrino
scatters that closely mimic low-mass WIMPs
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In LUX, photo-ionization in the bulk liquid can be time-
correlated with a prior scintillation or ionization event

‘S1’ (light) event ‘S2’ (charge) event

= Xe scintillation light can
ionize impurities in the bulk

—
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following a large energy deposition
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