Review of liquid noble gas detectors for Dark Matter search and latest results of Xenon1T

Julien Masbou
Subatech – Université de Nantes
Direct dark matter detection principle

Nuclear Recoil (NR)

$\chi + N \rightarrow \chi + N$
Direct dark matter detection principle

Nuclear Recoil (NR)

\[\chi + N \rightarrow \chi + N \]

Recoil energy ~1-100 keV

Electronic Recoil (ER)

\(\gamma \) and \(\beta \) particles interact with the atomic electrons → background
How is evolving the field of Direct Detection?

\[R \sim 0.13 \frac{\text{events}}{\text{kg} \cdot \text{year}} \left[\frac{A}{100} \times \frac{\sigma_{\chi N}}{10^{-38} \text{ cm}^2} \times \frac{\langle v \rangle}{220 \text{ km.s}^{-1}} \times \frac{\rho_{\odot}}{0.3 \text{ GeV.cm}^{-3}} \right] \]
Direct Detection Techniques

Discrimination is crucial!
- Use technology detecting two signals
- Or if one single signal, it should provide significant discrimination

Phonons/Heat

Ionization

Scintillation

10 meV/ph
100% energy

~1 keV/
few % energy

~10 eV/e
20% energy

Xe, Ar, Ne
Nal

DEAP-3600
CLEAN
XMASS
DAMA, KIMS
DM-Ice
SABRE

CuOre, COupp, PICASSO, PICO

TeO$_2$, Al$_2$O$_3$, LiF, C$_3$F$_8$

CaWO$_4$, BGO

Ge, Si

SuperCDMS
EDELWEISS

Xe, Ar

LUX
LZ
XENON
PandaX
ArDM
DarkSide
Darwin

Ge, CS$_2$, CF$_4$

CoGeNT
CDEX
Malbek
DAMIC
DMTPC
DRIFT

Representative experiments, not meant to be completed
Noble gases

<table>
<thead>
<tr>
<th></th>
<th>Neon</th>
<th>Argon</th>
<th>Krypton</th>
<th>Xenon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Number</td>
<td>10</td>
<td>18</td>
<td>36</td>
<td>54</td>
</tr>
<tr>
<td>Density</td>
<td>1.2</td>
<td>1.4</td>
<td>2.4</td>
<td>3</td>
</tr>
<tr>
<td>Scintillation (γ/keV)</td>
<td>30</td>
<td>40</td>
<td>25</td>
<td>42</td>
</tr>
<tr>
<td>Wavelength (nm)</td>
<td>85</td>
<td>128</td>
<td>150</td>
<td>178</td>
</tr>
<tr>
<td>Decay Time (ns)</td>
<td>15400</td>
<td>6.3, 1500</td>
<td>2, 91</td>
<td>2.2, 27, 45</td>
</tr>
<tr>
<td>Ionization (e-/keV)</td>
<td>46</td>
<td>42</td>
<td>49</td>
<td>64</td>
</tr>
<tr>
<td>Boiling Point (K)</td>
<td>27.1</td>
<td>87.3</td>
<td>119.8</td>
<td>165.0</td>
</tr>
<tr>
<td>Radioactivity</td>
<td>No</td>
<td>39Ar 1Bq/kg (1mBq/kg)</td>
<td>Yes</td>
<td>136Xe / Kr can be removed to ppt level</td>
</tr>
<tr>
<td>Price</td>
<td>$$</td>
<td>$ ($$$)</td>
<td>$$$</td>
<td>$$$$$</td>
</tr>
</tbody>
</table>

Julien Masbou, EDU 2017, Quy Nhon, 25th July 2017
Argon main characteristics

- Large abundance
 - Modest price
 - Giant detector are possible

- Relatively compact detectors
 - Self shielding

- Cryogenic feasible: 90K > 77K (LN₂)

- Scalable to large target masses

- Excellent Electronic recoil discrimination event with only light detection

- Need “Shift” Light (128 nm)

- Reduce threshold for detection

- Intrinsic radioactivity (1 - 0.001 Bq/kg)
Xenon main characteristics

- Large mass number A (131)
 - Interaction cross section $\propto A^2$

- 50% odd isotopes (^{129}Xe, ^{131}Xe)
 - for Spin-Dependent interactions

- Kr can be reduced to ppt levels

- High stopping power
 - active volume is self-shielding

- Efficient scintillator (178 nm)

- Scalable to large target masses

- Electronic recoil discrimination with simultaneous measurement of scintillation and ionization

- Very expensive
Dual phase TPC: principle

TPC = Time Projection Chamber

S1:
- Photon (λ = 178 nm) from Scintillation process
- Detected by PMTs (mainly bottom array)

S2:
- Electrons drift
- Extraction in gaseous phase
- Proportional scintillation light

3D reconstruction:
- X, Y from top array
- Z from Drift time

Julien Masbou, EDU 2017, Quy Nhon, 25th July 2017
Dual phase TPC: real life

X and Y position from S2 hit pattern on the top PMTs

Z position from drift time

Δt = 151 µs

S1 light signal

S2 charge signal

Julien Masbou, EDU 2017, Quy Nhon, 25th July 2017
DarkSide-50

Darside-50 (LAr) @ LNGS (Italy)

- 35 cm x 35 cm, ~ 37 kg fiducial
- 47.1 d ARr / 70.9 d UAr
- 1.4×10^3 kg.day / 2.6×10^3 kg.day
- No excess
- Data taking continue

More info about future of DarkSide on Friday (C. Savarese)

Julien Masbou, EDU 2017, Quy Nhon, 25th July 2017
Darkside analysis

50 days with Atmospheric Ar (AAr) 07->09/2014

70 days with Underground Ar (UAr) 04->07/2015
Physical Review D, 93 (2016): 081101(R)

Today, in taking data
> 1 yr lifetime (still blinded)
Particle and Astrophysical Xenon Experiments

PandaX-II (LXe) @ CJPL (China)
- 60 cm x 60 cm, ~400 kg fiducial
- 2nd largest operating LXe TPC
- 3.3×10^4 kg.day = 0.1 t.year
- No excess
- Data taking for the 2 next years

More info about future of CJPL on Friday (H. Wong)

PandaX II

Julien Masbou, EDU 2017, Quy Nhon, 25th July 2017
PandaX II new results SI limits

Mar. 9-Jun 30 2016, in total 98.7 live-day of under slightly different conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>live time (day)</th>
<th>E_{drift} (V/cm)</th>
<th>E_{extract} (kV/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.76</td>
<td>397.3</td>
<td>4.56</td>
</tr>
<tr>
<td>2</td>
<td>6.82</td>
<td>394.3</td>
<td>4.86</td>
</tr>
<tr>
<td>3</td>
<td>1.17</td>
<td>391.9</td>
<td>5.01</td>
</tr>
<tr>
<td>4</td>
<td>63.85</td>
<td>399.3</td>
<td>4.56</td>
</tr>
</tbody>
</table>

arXiv:1607.07400
LUX (LXe) @ SURF (USA)

- 49 cm x 49 cm, ~100 kg fiducial
- 332 live-days
- 3.4×10^4 kg.day = 0.1 t.year
- No excess
- Stopped

More info about future (LZ) in 1 hour (H. Lippincott)
Instead of traditional blinding, we employ a technique where fake signal events ("salt") are injected into data stream. NOT SIMULATION!!
LUX recent results on SD limits

- 49 cm x 49 cm, ~100kg fiducial
- 332 live-days
- 3.4 x 10^4 kg.day = 0.1 t.year
- No excess

Improvement of a factor of six compared with the results from the first science run – 95 days (PRL, 116, 161302 (2016))

arXiv:1705.03380
23 Institutions
10 Countries
135 Scientists
Phases of the XENON Program

XENON10
- 2005 – 2007
- 15 cm drift TPC
- Total: 25 kg
- Target: **14** kg
- Fiducial: 5.4 kg

Achieved (2007)
\[\sigma_{SI} = 8.8 \cdot 10^{-44} \text{ cm}^2 \]
@ 100 GeV/c^2

XENON100
- 2008 – 2016
- 30 cm drift TPC
- Total: 161 kg
- Target: **62** kg
- Fiducial: 34/48 kg

Achieved (2016)
\[\sigma_{SI} = 1.1 \cdot 10^{-45} \text{ cm}^2 \]
@ 55 GeV/c^2

First Results (2017)
\[\sigma_{SI} = 7.7 \cdot 10^{-47} \text{ cm}^2 \]
@ 35 GeV/c^2

XENON1T
- 2012 – 2019
- 100 cm drift TPC
- Total: 3200 kg
- Target: **2000** kg
- Fiducial: 1000 kg

Achieved (2017)
\[\sigma_{SI} = 7.7 \cdot 10^{-47} \text{ cm}^2 \]
@ 35 GeV/c^2

Projected (2022)
\[\sigma_{SI} = 1.6 \cdot 10^{-48} \text{ cm}^2 \]
@ 50 GeV/c^2

XENONnT
- 2017 (R&D) – 2023
- 144 cm drift TPC
- Total: 8000 kg
- Target: **6000** kg
- Fiducial: 4500 kg

Projected (2022)
\[\sigma_{SI} = 1.6 \cdot 10^{-48} \text{ cm}^2 \]
@ 50 GeV/c^2

Julien Masbou, EDU 2017, Quy Nhon, 25th July 2017
XENON1T facility

Water shield: deionized water as passive radiation shield

Muon veto: Active muon veto against muon induced neutrons (84 PMTs)

Cryogenics: Stable conditions (3.2t LXe)

Purification: LXe flow through getters, remove impurities

DAQ: Each channel has its own threshold, Flexible software algorithms

Readout: Up to 300MB/s for high rate calibrations

ReStoX: Emergency recovery up to 7.6 tons of LXe

Passive: No active cooling required to keep Xe contained

Kr Distillation: Remove Kr from system during fill or online

Rn Distillation: Initial tests show promising reduction for Rn
The largest Xe double-phase TPC ever built!

- Active Xe mass: 2 tons.
- Light sensors: 127+121 3” PMTs average QE = 35%
- Fully covered with high reflectivity PTFE to maximize light collection.
- Drift region: 1m height, 1m diameter.
Water Shield filling

- TPC fully immersed in water since July 2016
- Background studies and calibration runs started

Rate decrease with increasing Water level
Detector Stability

- LXe temperature stable at \(-96.07\, ^\circ C\), RMS 0.04 \(^\circ C\)
- GXe pressure stable at 1.934 bar, RMS 0.001 bar
Xenon purification

Goal: remove electronegative impurities below 1 ppb (O₂ equivalent) in the Xe gas fill and from outgassing of detector’s components with continuous circulation of Xe gas at high speed through hot getters.

Performance: evolution of e-lifetime, monitored regularly with ERs calibration sources, well described by physical model. Current value approaching the max drift time of the LXe TPC.

Julien Masbou, EDU 2017, Quy Nhon, 25th July 2017
Background Reduction: ^{85}Kr

- Commercial Xe contains \sim ppb of Kr
- Column principle: remove Kr from Xe by means of cryogenic distillation (gases have different boiling points)
- $>6.4 \times 10^5$ separation, output concentration < 0.048 ppt
- 5.5 m column, 6.5 kg/hr,

- New approach: Online Distillation
- Successfully reduced Kr to (0.62 ± 0.13) ppt measured by RGMS

- Background is now radon dominated

arXiv:1702.06942

Julien Masbou, EDU 2017, Quy Nhon, 25th July 2017
Recovery and Storage System: ReStoX

Goals:
- Store up to 7600 kg of Xe in gaseous or liquid/solid phase under high purity conditions
- Fill Xe in ultra-high-purity conditions into detector vessel
- Recover all the Xe from the detector. In case of emergency all Xe can be safely recovered in a few hours

Double walled, high pressure (72 bar) vacuum insulated sphere of 2.1 meter diameter, cooled by LN2 and by an internal LN-based condenser.
Science Run: Exposure

- Dark matter exposure: 34.2 Live days
- Calibration Data:
 - $^{83m}\text{Kr} \Rightarrow$ Spacial Response
 - $^{220}\text{Rn} \Rightarrow$ ER-Bands
 - $^{241}\text{AmBe} \Rightarrow$ NR-Bands
- Interrupted by a 5.5 magnitude earthquake

Julien Masbou, EDU 2017, Quy Nhon, 25th July 2017
$E = (n_{ph} + n_{e^-}) = \left(\frac{S_1}{g_1} + \frac{S_2}{g_2} \right) \cdot W$

How much energy is needed to produce a quantum (e- or γ): **13.7 eV**

Light

+ **Charge**

= **Total quanta**

Conserved!

Excellent linearity with electronic recoil energy from 40 keV to 2.2 MeV
From Kr83m and activated Xe131m, variation in LY and CY is at ~1% level.
Fitting Models to Calibration

• Full modeling of LXe and detector response in cS2_b vs cS1 space

• All parameters fitted with no significant deviation from priors

Novel ^{220}Rn internal source (from ^{228}Th)

Efficiencies

- **Detection efficiency** dominated by 3-fold PMTs coincidence requirement
 - Estimated via novel waveform simulation including systematic uncertainties
- **Selection efficiencies** estimated from control samples or simulation
 - Data quality and selection cuts tuned to calibraton data of single scarrer (WIMP-like) events
- **Search region** defined within 3-70 PE in corrected S1

<table>
<thead>
<tr>
<th>Cuts</th>
<th>Events remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>All events (cS1<200 PE)</td>
<td>128144</td>
</tr>
<tr>
<td>Data Quality & Selection</td>
<td>48955</td>
</tr>
<tr>
<td>Fiducial Volume</td>
<td>180</td>
</tr>
<tr>
<td>3 PE < cS1 < 70 PE</td>
<td>63</td>
</tr>
</tbody>
</table>

Results:
- **1042 kg**
Background Model

- ER and NR spectral shapes derived from models fitted to calibration data
- Other background expectations are data-driven, derived from control samples

<table>
<thead>
<tr>
<th>Background</th>
<th>Total</th>
<th>NR median - 2σ, 3-70pe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Recoil</td>
<td>(62 ± 8)</td>
<td>0.26 (+0.11)(-0.07)</td>
</tr>
<tr>
<td>Radiogenic neutrons (n)</td>
<td>(0.05 ± 0.01)</td>
<td>0.02</td>
</tr>
<tr>
<td>CNNS (ν)</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Accidental coincidences (acc)</td>
<td>(0.22 ± 0.01)</td>
<td>0.06</td>
</tr>
<tr>
<td>Wall leakage (wall)</td>
<td>(0.52 ± 0.32)</td>
<td>0.01</td>
</tr>
<tr>
<td>Anomalous (anom)</td>
<td>0.09 (+0.12)(-0.06)</td>
<td>(0.01 ± 0.01)</td>
</tr>
<tr>
<td>Total background</td>
<td>(63 ± 8)</td>
<td>(0.36 ± 0.09)</td>
</tr>
<tr>
<td>50 GeV/c², 10⁻⁴⁶cm² WIMP</td>
<td>(1.66 ± 0.01)</td>
<td>(0.82 ± 0.06)</td>
</tr>
</tbody>
</table>
• Extended unbinned profile likelihood analysis
• Most significant ER & NR shape parameters included from calibration fits
• Normalization uncertainties for all components
XENON1T Results

arXiv:1705.06655

World Best sensitivity
Minimum @ 35 GeV/c² : 7.7x10⁻⁴⁷cm²

WIMP mass [GeV/c²]

WIMP-nucleon σ [cm²]

XENON100 (2016)
PandaX-II (2016)
LUX (2017)
XENON1T (this work)
From XENON1T to XENONnT

Cross Section [cm²] vs. WIMP mass [GeV/c²] plot showing XENON1T, XENONnT, and other experiments.
Upgrade: XENONnT

- Quick upgrade of TPC and inner cryostat
- All major systems remain unchanged
- Construct TPC in parallel to XENON1T operation
- Upgrade starting 2018
Conclusion

- **XENON1T** first results demonstrate that the detector is performing very well

- The measured background is the lowest ever achieved in a DM detector: \((1.93 \pm 0.25) \times 10^{-4}\) events/(kg day keV)

- With only 34.2 days of exposure we have already obtained the best exclusion limit in the world: \(7.7 \times 10^{-47}\) cm\(^2@ 35\) GeV/c\(^2\)

- Up to now, > 100 days additional days of science run have been acquired (and detector still running) and are currently under analysis

- The foreseen sensitivity of **XENON1T** in 2 years is \(1.6 \times 10^{-47}\) cm\(^2\)

- LXe & LAr TPC are leading this field

More info about future of noble liquid on Friday