

Cosmology with KiDS

Edo van Uitert, KiDS collaboration

Recontres du Vietnam, Quy Nhon, July 9-15 2017

Strength of the distortion depends on:

- Distances to foreground LSS and background galaxies Angular diameter distances (cosmology dependent)
- Amount of structure in the foreground *Power spectrum (cosmology dependent)*

Extract correlated distortions: shear correlation functions

$$\hat{\xi}_{\pm}(\theta) = \frac{\sum_{ij} w_i w_j \left(\varepsilon_{t,i} \varepsilon_{t,j} \pm \varepsilon_{\times,i} \varepsilon_{\times,j}\right)}{\sum_{ij} w_i w_j}$$

 ε = observed ellipticity of galaxy

w = shape measurement weight

Several big WL programs ongoing

	KiDS	HSC	DES
Mirror [m]	2.6	8.2	4.0
Focus	Cassegrain	Prime	Prime
FOV [deg ²]	1.0	1.8	3.0
Area [deg ²]	1350	1400	5000
Filters	ugri(+ZYJHKs)	grizy	grizy
Seeing [arcsec]	0.68	0.58	0.94
Source density [gal/arcmin ²]	~8	~22	~4-7 (SV)
Depth	<i>r</i> ~24	<i>i</i> ~24.5	<i>r</i> ∼23-24 (SV)
WL Team	>30	>30	>120

m

- 450 deg² (observations up to July 2015) (+ ~1000 deg²)
- ugri coverage (+5 infrared bands from VIKING)
- Used for cosmic shear, galaxy-galaxy lensing (GGL), etc.

Photometric redshift calibration

0.9

Galaxy ellipticities were blinded to avoid confirmation bias

KiDS-450: Results (blind-1) _{S₈= σ₈ (Ω_m/0.3)^{0.5}}

• $S_8=0.745\pm0.039$ 2.3 σ discrepancy with Planck

KiDS-450: Results (blind-2) _{S₈= σ₈ (Ω_m/0.3)^{0.5}}

• $S_8=0.720\pm0.039$ 2.8 σ discrepancy with Planck

Hildebrandt, Viola et al. (2017)

KiDS-450: Results (blind-3) _{S₈= σ₈ (Ω_m/0.3)^{0.5}}

• $S_8=0.772\pm0.039$ 1.7 σ discrepancy with Planck

KiDS-450 (Hildebrandt+17) : 2.3 σ 'tension' with Planck

Wait for more data, or...

...combine different cosmological probes

- Include galaxy-galaxy lensing and clustering
- Exploit all available information
- Self-calibrates observational & systematic sources of bias (demonstrated on theory in e.g. Samuroff+17, Joachimi+10)
 - Euclid will also self-calibrate

We need to demonstrate that this works on data

How to combine probes?

- Usually at the likelihood level (hard if correlated)
- Optimally done within the same framework
- Account for nuisance parameters that simultaneously affect different observables

KIDS fully covers GAMA

- Spec-*z* survey, highly complete to *R*<19.8
- Perfectly suited as foreground sample for galaxy-galaxy lensing (GGL) with KiDS
- Overlap exploited in various GGL studies (*Viola+15, Sifón+15, van Uitert+16,17, Brouwer+16,17, Dvornik+17*)

Combine cosmic shear, GGL and angular clustering

- Put probes on same angular frequency scales: use power spectra
- Follows methodology of Schneider et al. (2002)

- Practically unbiased over wide *l* ranges
- Extended to galaxy-matter cross-correlation and angular galaxy correlation function

E-modes of cosmic shear power spectrum

B-modes

 $(\times 10^{5})$ 2P $^{gm}(t)/2\pi$ 0⁸) て

+ Analytical covariance matrix, accounts for all crosscorrelations

Model the signal with cosmoMC+ (Lewis & Bridle 2002)

- Based on extended version of Joudaki+17
- Includes intrinsic alignment, baryonic feedback on matter power spectrum
- Simultaneously models galaxy-galaxy lensing (Joudaki+ in prep.) and clustering
- Assume a constant and scale-independent effective galaxy bias (in Fourier space)

0.8 1.0 1.2 1.4 $S_8 \equiv \sigma_8 (\Omega_m / 0.3)^{0.5}$

One major contaminant: intrinsic alignment

- Galaxies are not randomly oriented, but align with LSS
- Biases cosmological inference if unaccounted for
- Use 'non-linear linear alignment model': 1 free param, AIA
- Cosmic shear and galaxy-galaxy lensing both affected: AIA better constrained when including P^{gm} in fit

Joint analysis of three cosmological probes with KiDS+GAMA

- Including P^{gm}+P^{gg}: error on S₈= σ_8 (Ω_m /0.3)^{0.5} shrinks 21%
- Results consistent with Planck and fiducial KiDS-450
- Benefits of self-calibration:
 - Optimally exploit the data
 - Self-consistently model & marginalise over nuisance parameters
 - Improve your cosmology constraints and learn about astrophysics

More details in arxiv:1706.05004

