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1. Introduction
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1. Scalar-tensor theories 
Scalar fields coupled to gravity.  e.g.) Brans-Dicke gravity, f(R) gravity, galileon gravity, … 

2. Vector-tensor theories 
Vector fields coupled to gravity.  e.g.) Generalized Proca (GP) theories,  
 
 

3. Massive gravity

8 > > > > > > > > > > > > < > > > > > > > > > > > > :

Horndeski theories

The discovery of late-time cosmic acceleration is reported in 1998.  
The source for this unknown phenomenon is named dark energy (DE). 


DE may originate from modification of gravity at large distances.

Beyond-generalized Proca (BGP) theories, 

The late-time cosmic acceleration

DE models based on modified gravity 

Extended vector-tensor theories.  Naruko-san’s talk



Generalized Proca (GP) theories

1. Introduction
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L = �1

4
Fµ⌫Fµ⌫ ,

(Fµ⌫ ⌘ @µA⌫ � @⌫Aµ)

Maxwell field (massless)

• U(1) gauge invariant

• DOF: 2 transverse polarizations

• One cannot introduce galileon-like 
interactions keeping U(1) symmetry

L = �1

4
Fµ⌫Fµ⌫ +

1

2
m2AµAµ ,

Proca field (massive)

• mass term breaks U(1) gauge invariance

• DOF: 2 transverse polarizations and 

                              + 1 longitudinal mode

Longitudinal 
mode

• What happens if one generalizes Proca  
theories by keeping propagating DOF?Deffayet, Gumrukcuoglu, Mukohyama and Wang (2014)



Generalized Proca (GP) theories

1. Introduction
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X = �1

2
AµA

µ , F = �1

4
Fµ⌫F

µ⌫ , Y = AµA⌫Fµ
↵F⌫↵ , Lµ⌫↵� =

1

4
✏µ⌫⇢�✏↵���R⇢��� , F̃µ⌫ =

1

2
✏µ⌫↵�F↵� ,

L. Heisenberg (2014) These terms are introduced in order

to keep EOMs up to second-order.

• DOF: 2 vector + 1scalar (+ 2 tensor) 

• In the scalar-limit                    , these theories reduces to shift-symmetric  

Horndeski theories. 
(Aµ ! rµ�)

(✏µ⌫⇢� : Levi-Civita tensor)

They corresponds to intrinsic vector modes.L2 =G2(X) ,

L3 =G3(X)rµA
µ ,

L4 =G4(X)R+G4,X(X)
⇥
(rµA

µ)2 + c2rµA⌫rµA⌫ � (1 + c2)rµA⌫r⌫Aµ
⇤
,

L5 =G5(X)Gµ⌫rµA⌫ � 1

6
G5,X(X)

⇥
(rµA

µ)3 � 3d2rµA
µr⇢A�r⇢A�

� 3(1� d2)rµA
µr⇢A�r�A⇢ + (2� 3d2)rµA⌫r⇢Aµr⌫A⇢ + 3d2rµA⌫r⇢Aµr⇢A⌫

⇤
,

L6 =G6(X)Lµ⌫↵�rµA⌫r↵A� +
1

2
G6,X(X)F̃↵�F̃µ⌫r↵Aµr�A⌫ .



BG dynamics

2. Cosmology in GP theories
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ds2 = �dt2 + a2(t)d�x2metric: vector filed: Aµ = (�(t), 0, 0, 0)

S =

Z
d

4
x

p
�g (LGP + LM )action:

modified Einstein equation

G2 �G2,X�2 � 3G3,XH�3 + 6G4H
2 � 6(2G4,X +G4,XX�2)H2�2

+ 5G5,XH3�3 +G5,XXH3�5 = ⇢M ,

G2 � �̇�2G3,X + 2G4 (3H
2 + 2Ḣ)� 2G4,X� (3H2�+ 2H�̇+ 2Ḣ�)� 4G4,XXH�̇�3

+G5,XH�2(2Ḣ�+ 2H2�+ 3H�̇) +G5,XXH2�̇�4 = �PM .

(0,0):

(1,1):

Intrinsic vector modes do not appear at the BG level.

�
�
G2,X + 3G3,XH�+ 6G4,XH2 + 6G4,XXH2�2 � 3G5,XH3��G5,XXH3�3

�
= 0 .

field equation

In the branch          , this is the algebraic equation of     and    . Thus, there exists 

de sitter solutions characterized by  

� 6= 0 � H
� = constant and H = constant.

H ⌘ ȧ/a



BG dynamics (extended vector Galileon)

2. Cosmology in GP theories
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Let us consider the following generalization of the vector Galileon:

where                                                                                               This model reduces to  
the vector Galileon when                  . 

G2(X) = b2X
p2 , G3(X) = b3X

p3 , G4(X) =
M2

pl

2
+ b4X

p4 , G5(X) = b5X
p5 .

�p / H�1

p3 = (p+ 2p2 � 1) /2 , p4 = p+ p2 , p5 = (3p+ 2p2 � 1) /2 .

The field equation gives 

p2 = p = 1

�i ⌘
pibi

2pi�p2p2b2
(�pH)i�2 ,



BG dynamics (extended vector Galileon)

2. Cosmology in GP theories
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s=1
s=1/2
s=1/5wDE = �3(1 + s) + s⌦r

3(1 + s⌦DE)
.

The combined analysis of SNIa, CMB 

and BAO gives the bound on    as s

0  s  0.36 (95% C.L.)

De Felice, Tsujikawa (2012)

DE equation of state

s ⌘ p2/p

(⌦r = ⌦DE = 0)For the vector Galileon model           , we have                  during the matter                      . 

For smaller    , this value approaches  

(s = 1) wDE = �2
s �1.



cosmological perturbations 

2. Cosmology in GP theories
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In order to study stability conditions and observational signatures for the matter distribution, 

we need to study the cosmological perturbations. Perturbations of metric (in flat gauge), the 

vector field can be written as 

ds

2 = � (1 + 2↵) dt2 + 2 (@i�+ Vi) dtdx
i + a

2(t) (�ij + hij) dx
i
dx

j

A0 = �(t) + �� , Ai =
1

a2
�ij (@j�V + Ej) .Aµ =

�
A0 , Ai

�
,

metric:

vector field:

scalar perturbation:

vector perturbation:

tensor perturbation: hij

�
@ihij = hi

i = 0
�

↵ , � , �� , �V

Vi , Ej (@iV i = 0 = @jEj)



stability conditions

2. Cosmology in GP theories
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scalar perturbation:

vector perturbation:

tensor perturbation:
S

(2)
T =

X

�=+,⇥

Z
dt d

3
x a

3 qT

8


ḣ

2
� � c

2
T

a

2
(@h�)

2

�
,

S

(2)
V '

2X

i=1

Z
dt d

3
x

aqV

2

✓
Ż

2
i +

k

2

a

2
c

2
V Z

2
i

◆
,

The no ghost                             and no-gradient instability                 

conditions are satisfied for |�4| ⌧ 1 |�5| ⌧ 1 ,

(c2T > 0 , c2V > 0)(qT > 0 , qV > 0)

L(2)
S = a3

✓
~̇X tK ~̇X +

k2

a2
~X tG ~X � ~X tM ~X � ~X tB ~̇X

◆
,

~X t = ( , �⇢M ) ,  ⌘ �V + �(t)�

• no-ghost condition: Two eigenvalues of the kinetic matrix should be positive.  
                                 One of them is                        , the other eigenvalue  
                                 is positive if  

• no-gradient instability condition:

⇢M + PM > 0 qS
b2 < 0.

|�4| ⌧ 1 |�5| ⌧ 1 ,



An example of healthy models 

2. Cosmology in GP theories
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p2 = 1 , p = 5 , �4 = 0.01 , �5 = 0 , c2 = �1 .



Effective gravitational coupling 

2. Cosmology in GP theories
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In order to see observational signatures for the matter distribution, we study 

the matter perturbation under the quasi-static approximation on the sub-horizon-scale. 

By combining scalar perturbation equations, we obtain 

�̈ + 2H �̇ � 4⇡Ge↵⇢M� ' 0 (� ' �⇢M/⇢M )

Here         is the effective gravitational coupling described by            Ge↵

Ge↵ =
⇠2 + ⇠3

⇠1

⇠1 = 4⇡�2 (w2 + 2HqT )
2
,

⇠2 = [H (w2 + 2HqT )� ẇ1 + 2ẇ2 + ⇢M ]�2 � w2
2

qV
,

⇠3 =
1

8H2�2q3SqT c
2
S


2�2 {qS [w2ẇ1 � (w2 � 2HqT )ẇ2] + ⇢Mw2[3w2(w2 + 2HqT )� qS ]}

+
qS
qV

w2 {w2(w2 � 2HqT )� w6�(w2 + 2HqT )}
�2

,

positive

positive

positive/negative

When             ,         tends to decrease.qV ⌧ 1 Ge↵



Effective gravitational coupling 

2. Cosmology in GP theories
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smaller qV .

qV = G2,F + 2G2,Y �
2 � 4g5H�+ 2G6H

2 + 2G6,XH2�2 ,

For                  , the last term is constant 

when             By tuning the constant     , 

one can easily decrease  

G6 = b6X
p6

p6 = p . b6
qV .

p2 = 1/2, p = 5/2, �4 = 10�4, �5 = 0.052, c2 = d2 = 0.



Effective gravitational coupling 

2. Cosmology in GP theories
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smaller qV .

p2 = 1/2, p = 5/2, �4 = 10�4, �5 = 0.052, c2 = d2 = 0.
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8

z

qV=10
qV=1
qV=0.1
qV=0.001

f ⌘ �̇/(H�)

�8

: the growth rate of density perturbation

: the amplitude of density perturbation
We normalized       by using Planck best-fit value.�8



Beyond-generalized Proca (BGP) theories
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L. Heisenberg, RK and S. Tsujikawa (2016)

The Lagrangians of GP theories are constructed by using the Levi-Civita tensor  
and the derivative of the vector field as follows:

As long as this structure is being kept, higher order derivatives do not appear in EOMs.  
On the other hand, the following Lagrangians            break this feature: 

Deffayet et al. (2015)

Li+2 = gi+2(X) �̂�1···�i�i+1···�4
↵1···↵i�i+1···�4r�1A

↵1 · · ·r�iA
↵i ,

⇣
�̂�1�2�3�4
↵1↵2�3�4

⌘ ✏↵1↵2�3�4✏
�1�2�3�4

⌘

LN
4 = f4(X)�̂�1�2�3�4

↵1↵2↵3�4
A↵1A�1r↵2A�2r↵3A�3 ,

LN
5 = f5(X)�̂�1�2�3�4

↵1↵2↵3↵4
A↵1A�1r↵2A�2r↵3A�3r↵4A�4 ,

LN
4 ,LN

5

In the scalar limit, these terms reduce to a part of GLPV theories (beyond Horndeski). 

Those terms give rise to higher order spatial derivatives but no higher order time derivatives.

3. Cosmology in BGP theories



Lagrangians describing BGP theories 

3. Cosmology in BGP theories
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L2 = G2(X,F, Y ) ,

L3 = G3(X)rµA
µ ,

L4 = G4(X)R+G4,X(X)
⇥
(rµA

µ)2 �r⇢A�r�A⇢
⇤
,

L5 = G5(X)Gµ⌫rµA⌫ � 1

6
G5,X(X)[(rµA

µ)3 � 3rµA
µr⇢A�r�A⇢ + 2r⇢A�r�A⇢r�A� ]

� g5(X)F̃↵µF̃ �
µr↵A� ,

L6 = G6(X)Lµ⌫↵�rµA⌫r↵A� +
1

2
G6,X(X)F̃↵�F̃µ⌫r↵Aµr�A⌫ ,

LN
4 = f4(X)�̂�1�2�3�4

↵1↵2↵3�4
A↵1A�1r↵2A�2r↵3A�3 ,

LN
5 = f5(X)�̂�1�2�3�4

↵1↵2↵3↵4
A↵1A�1r↵2A�2r↵3A�3r↵4A�4 ,

L̃N
5 = f̃5(X)�̂�1�2�3�4

↵1↵2↵3↵4
A↵1A�1r↵2A↵3r�2A�3r↵4A�4 ,

LN
6 = f̃6(X)�̂�1�2�3�4

↵1↵2↵3↵4
r�1A�2r↵1A↵2r�3A

↵3r�4A
↵4 ,

with

L. Heisenberg, RK and S. Tsujikawa (2016)



Concrete models

3. Cosmology in BGP theories
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In these two models, the BG dynamics is completely the same. 

Differences between two models appear at the level of perturbations.

GP theories

BGP theories

G4 =
M2

pl

2
+ b4X

p4 , G5 = b5X
p5 , f4 = f5 = f̃5 = f̃6 = 0 .

G4 =
M2

pl

2
, G5 = 0 , f4 =

1

4
(2p4 � 1)b4X

p4�2 , f5 = � 1

12
p5b5X

p5�2 ,

f̃5 = c5X
q5 , f̃6 = c6X

q6 .

with G2 = b2X
p2 + F , G3 = b3X

p3 , g5 = G6 = 0 .



stability conditions in BGP theories

3. Cosmology in BGP theories

17

scalar perturbations:

• The no-ghost condition in BGP is the same as that in GP.

• The no gradient instability condition is 

10-30

10-25

10-20

10-15

10-10

10-5

100

-1 0 1 2 3 4 5 6
log10(1+z)

cS
2

cP
2

βP

�P

c2S = c2P � �P

c2P : scalar propagation speed squared in GP theories

�P : parameter characterizing the deviation from GP theories

�P / ⌦DE (⌦r + ⌦m) (f4 + 3H�f5)

The deviation from GP theories affects only 

around the present epoch.

tensor and vector perturbations:

The no-ghost and no-gradient instability conditions are satisfied for 
|�4| ⌧ 1 |�5| ⌧ 1 ,

|f̃6|H2�2 ⌧ 1 , |f̃5|H�3 ⌧ 1



matter perturbation

3. Cosmology in BGP theories
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• effective gravitational coupling

�4 = 5.00⇥ 10�2,�5 = 6.78⇥ 10�2,

p2 = 1, p = 5.   (health both in GP and BGP)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

-2 -1 0 1 2

G
ef

f /
 G

log10(1+z)

BGP 
GP

However, it shows a temporal growth around today 

in GP, while it temporally decreases in BGP.

1 + z

In this parameter choices,        become smaller than 

that in GR at the de Sitter point both in GP and BGP.

Ge↵

In BGP theories, the lower growth rate can be 

realized compared to GP theories and               .⇤-CDM

1 10 1000.10.01



matter perturbation

3. Cosmology in BGP theories
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• effective gravitational coupling

�4 = 5.00⇥ 10�2,�5 = 6.78⇥ 10�2,

p2 = 1, p = 5.   (health both in GP and BGP)
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In BGP theories, the lower growth rate can be 

realized compared to GP theories and               .⇤-CDM
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4. Conclusions
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Generalized Proca (GP) and Beyond-generalized Proca (BGP) theories give rise to  
interesting cosmological solutions with a stable late-time de Sitter attractor. 


We derived 6 no-ghost and no-gradient instability conditions associated with  
tensor, vector, scalar perturbations. 


We constructed a class of models in which all the stability conditions are satisfied  
during the whole cosmic expansion history. 


We also derived the effective gravitational coupling that can be used to put  
observational constraints on the models. 


In BGP theories, the effective gravitational coupling can be even smaller than  
that in GP theories. By virtue of this behavior, it can be compatible with the recent 
RSD data even by using Planck best-fit value of 


It will be of interest to put observational constraints on the viable parameter spaces  
for our proposed models.

�8(z = 0) = 0.82.


