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La Thuile

| have been interested in this Vietnam conference
% | really enjoyed the Moriond 2014 at La Thuile in Italy
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we enjoyed many nice talks on

how to test/constrain physics models observationally



my talk is about

how to test/constrain physics models theoretically



my talk is about

“healthy” UV completion

!

how to test/constrain physics models theoretically

T

low energy effective theories




mostly a review of general ideas in the community,

but quite biased and related to my own works
[Andriolo-Junghans-TN-Shiu to appear] [TN-Shiu in progress]



O. landscape vs swampland



probably, you have heard of “string landscape”
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there seem to exist almost infinite vacua in string theory
- how to compactify the extra dimensions
- how to put D-branes, -
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in traditional string phenomenology,
people look for vacua in the landscape (~ QFT models)
- describing Standard Model of particle physics

- realizing good models of inflation, dark matter, etc



in the case of inflation...



observational constraints on inflaton potential
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it is known that there are a class of QFT models

which are “difficult” to realize in string theory



a typical example is the so-called natural inflation



observational constraints on inflaton potential
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observational constraints on inflaton potential
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natural inflation: axion = inflaton

# natural inflation [Freese-Frieman-0Olinto '90]

inflaton is an axion with the Lagrangian

£= 30,00~ V(0)

V(p) x g~ Dinst (1 — COS ?) | Z g~ Oinst (1 — COoS n7q5>

n>2

.y
- f is the axion decay constant ~ (coupling)
- enjoys a periodic shift symmetry ¢ — ¢ + 27 f

- Sinst is the instanton action ~ energy



slow-roll axion potential

/0

V(¢)
L.

27 f

for a successful inflation,

inflaton potential has to be flat enough (slow-roll condition)

- negligible higher harmonics (1 > 2) — Sinst > 1

- long enough periodicity — f > Mp,



string theory has so many axions,

but seems no axion satisfying these two conditions

[Banks-Dine-Fox-Gorbaatov ‘03]



Q. Is there any reason behind?



A. Not all the EFTs are UV completable
In a consistent way



In string theory community,

such an idea Is dubbed swampland
[Vafa ‘05]



landscape -
EET with healthy UV completion

swampland :

apparently consistent, but problematic



clarifying boundaries of landscape and swampland

Is Important for both the theory and phenomenology



iIn the rest of my talk,
| introduce 2 types of swampland arguments
1. weak gravity conjecture

2. positivity bounds



1. Weak Gravity Conjecture



the claim is very simple
“gravity is the weakest force”



Weak Gravity Conjecture
[ArkaniHamed-Motl-Nicolis-Vafa 06’]

ex. electromagnetic force vs gravity

electric force ~ 92q2 (g: gauge coupling, g: charge)
L 5 m?
gravitational force ~ Gnym® ~ —5 (m: mass)
MPI

™m

electric force > gravitational force — gq > ——
Mp;

roughly speaking, “coupling > energy”



WGC vs axion inflation

# generalization to axion
V(p) x e~ Dinst (1 — COS ?) + Z e~ "WDinst (1 — COS n_gb)
1) = f

Sinst ~ energy of instanton, f ~ (coupling)']

e T ¢ <1

— >
J Mp Mp;

“coupling > energy” =

# implications to axion inflation
we need S;,; > 1 and f > Mp; for a successful inflation,

but WGC prohibits these two satisfied at the same time



Q. what is behind the conjecture?



A. black hole dynamics



black hole entropy

BH enjoys thermodynamic properties

[Bekenstein, Hawking,...]

in particular, its entropy S is
A

S = 1 (A : horizon area)

In quantum gravity (= microscopic description of gravity)

we expect that BH entropy is statistical entropy S = —tr(pln p)

indeed, string theory explicitly showed that it is the case

at least for certain black holes [Strominger-Vafa '96]




no global symmetry in quantum gravity

# no-hair theorem:
event horizon — global symmetry charge cannot be observed

cf. elemag charge is observable via background gauge field

global symmetry gauge symmetry



no global symmetry in quantum gravity

# no-hair theorem:

event horizon — global symmetry charge cannot be observed

cf. elemag charge is observable via background gauge field

# statistical BH entropy in theories with global symmetries

require ensemble of states wth V global charge

— generica

— no globa

ly large degeneracy & divergent entropy

symmetry in quantum gravity!?

% consistent with string theory, AdS/CFT etc

[ex. Susskind 95°, Banks-Seiberg 10’]



global symmetry = gauge symmetry at g =0

— natural to expect a lower bound on the gauge coupling



weak gravity conjecture provides a quantitative bound

by requiring finiteness of the # of stable states

% to make extremal BH (no hawking radiation) unstable,
m

Mp
[ArkaniHamed-Motl-Nicolis-Vafa 06’]

require existence of a particle satisfying gq >



recent directions:

1. how to evade WGC and realize axion inflation models

[De la Fuente et al ’14, Bachlechner et al 15, Choi-Kim ‘15, Conlon-Krippendorf ’16, ---]

2. better understanding & towards a proof of WGC

- lessons from string theory examples

[Brown et al '15, Heidenreich et al ’15, Hebecker-Soler 17, Montero et al ’17]

- use of AdS/CFT (holography)

[Nakayama-Nomura ’15, Harlow ’15, Benjamin et al 16, Montero et al *16]

- relation to positivity bounds

[Cheung-Remmen 14, Andriolo-Junghans-1TN-Shiu to appear]



2. positivity bound



consistency such as unitarity, analyticity and causality

— generically constrain signs of effective interactions



an illustrative example for positivity

# a scalar EFT with a shift symmetry ¢ — ¢ + const

[’___( u¢) | a4(au¢)4

X a shows up, e.g., after integrating out a heavy field o

¢ ¢

\p2\<<m
2
m +p qg ¢

2

the effective coupling is o = IS 0
2m?2 —



more generally, positivity of a follows only from
- unitarity of UV completion

- analyticity of scattering amplitudes

[Adams-Arkani Hamed-Dubovsky-Nicolis-Rattazzi '06]



unitarity is the origin of the bound

# optical theorem — positivity of Im [forward scattering]

m =0 ==%|—@w—| 20
T

what we assume are
- existence of complete set of physical states
- absence of negative norm states (unitarity)



analyticity relates IR and UV

A

AAAA %

analytic structure of 4pt amplitudes

in the forward limit

— o

S

(s)

assumptions:
- poles & branch cuts on the shell

- analytic on the other points




analyticity relates IR and UV

assumptions:
- poles & branch cuts on the shell

- analytic on the other points

analytic structure of 4pt amplitudes

in the forward limit = "  —

(s)xs™

3

r

consider a contour integral

ds 1
omis3 T
Ris~0 das?+0(s")

— 4o




analyticity relates IR and UV

assumptions:

A S—— <"‘> =+ | - poles & branch cuts on the shell

- analytic on the other points

analytic structure of 4pt amplitudes
in the forward limit = () <= (s) xs7”

( )

consider a contour integral and deform the contour

ds 1 2 [T ds ~
L= == Sm=0=>0
50

IR: s ~ 0 UV:sg0 < s <0
% (Lh.s.) = 4«




analyticity relates IR and UV

assumptions:

A S—— <"‘> =+ | - poles & branch cuts on the shell

- analytic on the other points

analytic structure of 4pt amplitudes
in the forward limit = () <= (s) xs7”

( )

consider a contour integral and deform the contour

ds 1 2 [ ds

=0 =="] s3im=_ = >0
S0

IR: s ~ () UV:s0 < s < o0

% (L.h.s.) = 4o, so that positivity o > 0 follows




in this way,
principles such as unitarity, analyticity and causality

generically imply positivity of effective interactions

> If this bound is violated, we should give up some of them



applications of positivity bound

Weak Gravity Conjecture from positivity bounds

- positivity of corrections to Einstein-Maxwell theory

after integrating out massive charged particles

[Cheung-Remmen 14, Andriolo-Junghans-1N-Shiu to appear]

positivity in EFT of inflation

- positivity of primordial scalar 4pt functions (Baumann et al *15]

- positivity of primordial scalar 3pt functions [TN-Shiu in progress]

positivity in modified gravity such as massive gravity

[Cheung-Remmen 16, Bonifacio et al 16, de Rham et al *17]




summary messages

# Landscape vs Swampland

- apparently consistent EFT can be problematic

If we take into account the healthiness of UV completion
- better to check if your model is in landscape or swampland

- If experiments prefer what we think swampland,

we need to drastically change our approach to UV theory




summary messages

# Weak Gravity Conjecture

- compatibility with BH dynamics constrains IR physics

- upper bound on axion decay constant

— relevant to axion

# positivity bound

inflation, string axion DM, ...

- signs of effective interactions are generically constrained

by unitarity, analyticity and causality

- ex. sign of primorc

lal non-Gaussianity can be useful

to check these QFT principles at inflationary scale!




cam on!



