

Quy Nhon

La Thuile

I have been interested in this Vietnam conference

X I really enjoyed the Moriond 2014 at La Thuile in Italy

we enjoyed many nice talks on how to test/constrain physics models observationally

how to test/constrain physics models theoretically

my talk is about "healthy" UV completion

how to test/constrain physics models theoretically

low energy effective theories

mostly a review of general ideas in the community, but quite biased and related to my own works

[Andriolo-Junghans-TN-Shiu to appear] [TN-Shiu in progress]

0. landscape vs swampland

there seem to exist almost infinite vacua in string theory

- how to compactify the extra dimensions
- how to put D-branes, ···

there seem to exist almost infinite vacua in string theory

- how to compactify the extra dimensions
- how to put D-branes, ···

there seem to exist almost infinite vacua in string theory

- how to compactify the extra dimensions
- how to put D-branes, ···

in traditional string phenomenology, people look for vacua in the landscape (~ QFT models)

- describing Standard Model of particle physics
- realizing good models of inflation, dark matter, etc

in the case of inflation...

observational constraints on inflaton potential

deviation from scale invariance

find a stringy setup reproducing correct inflaton potential!

it is known that there are a class of QFT models which are "difficult" to realize in string theory

observational constraints on inflaton potential

deviation from scale invariance

find a stringy setup reproducing correct inflaton potential!

observational constraints on inflaton potential

deviation from scale invariance

find a stringy setup reproducing correct inflaton potential!

natural inflation: axion = inflaton

natural inflation [Freese-Frieman-Olinto '90]

inflaton is an axion with the Lagrangian

$$\mathcal{L} = -\frac{1}{2}(\partial_{\mu}\phi)^{2} - V(\phi)$$

$$V(\phi) \propto e^{-S_{\rm inst}} \left(1 - \cos \frac{\phi}{f} \right) + \sum_{n \ge 2} e^{-nS_{\rm inst}} \left(1 - \cos \frac{n\phi}{f} \right)$$

- f is the axion decay constant \sim (coupling) $^{-1}$
- enjoys a periodic shift symmetry $\phi \rightarrow \phi + 2\pi f$
- $S_{\rm inst}$ is the instanton action \sim energy

slow-roll axion potential

for a successful inflation,

inflaton potential has to be flat enough (slow-roll condition)

$$V(\phi) \propto e^{-S_{\rm inst}} \left(1 - \cos \frac{\phi}{f} \right) + \sum_{n \geq 2} e^{-nS_{\rm inst}} \left(1 - \cos \frac{n\phi}{f} \right)$$

- negligible higher harmonics ($n \geq 2$) $\rightarrow S_{\rm inst} > 1$
- long enough periodicity $\to f > M_{\rm Pl}$

string theory has so many axions, but seems no axion satisfying these two conditions

[Banks-Dine-Fox-Gorbaatov '03]

Q. Is there any reason behind?

A. Not all the EFTs are UV completable in a consistent way

in string theory community, such an idea is dubbed swampland [Vafa '05] landscape:

EFT with healthy UV completion

swampland:

apparently consistent, but problematic

clarifying boundaries of landscape and swampland is important for both the theory and phenomenology

in the rest of my talk,

I introduce 2 types of swampland arguments

- 1. weak gravity conjecture
- 2. positivity bounds

1. Weak Gravity Conjecture

the claim is very simple "gravity is the weakest force"

Weak Gravity Conjecture

[ArkaniHamed-Motl-Nicolis-Vafa 06']

ex. electromagnetic force vs gravity electric force $\sim g^2q^2$ (g: gauge coupling, q: charge) gravitational force $\sim G_N m^2 \sim \frac{m^2}{M_{\rm Pl}^2}$ (m: mass)

electric force > gravitational force $\to gq \ge \frac{m}{M_{\rm Pl}}$ roughly speaking, "coupling > energy"

WGC vs axion inflation

generalization to axion

$$V(\phi) \propto e^{-S_{\rm inst}} \left(1 - \cos \frac{\phi}{f} \right) + \sum_{n \ge 2} e^{-nS_{\rm inst}} \left(1 - \cos \frac{n\phi}{f} \right)$$

 $S_{\rm inst}$ ~ energy of instanton, f ~ (coupling)⁻¹

"coupling > energy"
$$\Leftrightarrow \quad \frac{1}{f} > \frac{S_{\mathrm{inst}}}{M_{\mathrm{Pl}}} \; \Leftrightarrow \; \frac{f}{M_{\mathrm{Pl}}} \cdot S_{\mathrm{inst}} < 1$$

implications to axion inflation

we need $S_{\rm inst}>1$ and $f>M_{\rm Pl}$ for a successful inflation,

but WGC prohibits these two satisfied at the same time

Q. what is behind the conjecture?

A. black hole dynamics

black hole entropy

BH enjoys thermodynamic properties

[Bekenstein, Hawking,...]

in particular, its entropy S is

$$S = \frac{A}{4}$$
 (A: horizon area)

in quantum gravity (= microscopic description of gravity)

we expect that BH entropy is statistical entropy $S = -\text{tr}(\rho \ln \rho)$

indeed, string theory explicitly showed that it is the case at least for certain black holes [Strominger-Vafa '96]

no global symmetry in quantum gravity

no-hair theorem:

event horizon → global symmetry charge cannot be observed cf. elemag charge is observable via background gauge field

global symmetry

gauge symmetry

no global symmetry in quantum gravity

no-hair theorem:

event horizon → global symmetry charge cannot be observed cf. elemag charge is observable via background gauge field

statistical BH entropy in theories with global symmetries require ensemble of states wth ∀ global charge

- → generically large degeneracy & divergent entropy
- → no global symmetry in quantum gravity!?

[ex. Susskind 95', Banks-Seiberg 10']

global symmetry = gauge symmetry at g=0

→ natural to expect a lower bound on the gauge coupling

weak gravity conjecture provides a quantitative bound by requiring finiteness of the # of stable states

* to make extremal BH (no hawking radiation) unstable,

require existence of a particle satisfying $gq \geq \frac{m}{M_{\rm Pl}}$

[ArkaniHamed-Motl-Nicolis-Vafa 06']

recent directions:

1. how to evade WGC and realize axion inflation models

[De la Fuente et al '14, Bachlechner et al '15, Choi-Kim '15, Conlon-Krippendorf '16, …]

- 2. better understanding & towards a proof of WGC
 - lessons from string theory examples

[Brown et al '15, Heidenreich et al '15, Hebecker-Soler '17, Montero et al '17]

use of AdS/CFT (holography)

[Nakayama-Nomura '15, Harlow '15, Benjamin et al '16, Montero et al '16]

relation to positivity bounds

[Cheung-Remmen '14, Andriolo-Junghans-TN-Shiu to appear]

2. positivity bound

consistency such as unitarity, analyticity and causality
\rightarrow generically constrain signs of effective interactions

an illustrative example for positivity

a scalar EFT with a shift symmetry $\phi \rightarrow \phi + \mathrm{const}$

$$\mathcal{L} = -\frac{1}{2}(\partial_{\mu}\phi)^{2} + \frac{\alpha}{\Lambda^{4}}(\partial_{\mu}\phi)^{4} + \dots$$

lpha shows up, e.g., after integrating out a heavy field σ

the effective coupling is $\alpha = \frac{g^2}{2m^2} \ge 0$

more generally, positivity of α follows only from

- unitarity of UV completion
- analyticity of scattering amplitudes

[Adams-Arkani Hamed-Dubovsky-Nicolis-Rattazzi '06]

unitarity is the origin of the bound

optical theorem → positivity of Im [forward scattering]

$$|\mathbf{m} \longrightarrow \mathbf{m}| \longrightarrow \mathbf{m}| \longrightarrow \mathbf{m}|^2 \ge 0$$

what we assume are

- existence of complete set of physical states
- absence of negative norm states (unitarity)

analytic structure of 4pt amplitudes

in the forward limit \iff (s)

assumptions:

- poles & branch cuts on the shell
- analytic on the other points

assumptions:

- poles & branch cuts on the shell
- analytic on the other points

analytic structure of 4pt amplitudes

in the forward limit \Longrightarrow $(s) \times s^{-3}$

consider a contour integral

$$\oint \frac{ds}{2\pi i} \frac{1}{s^3} \longrightarrow \longrightarrow = 4\alpha$$

$$\operatorname{IR:} s \sim 0 \quad 4\alpha s^2 + \mathcal{O}(s^3)$$

assumptions:

UV: $s_0 \leq s \leq \infty$

- poles & branch cuts on the shell
- analytic on the other points

analytic structure of 4pt amplitudes

in the forward limit \longrightarrow $(s) \times s^{-3}$

consider a contour integral and deform the contour

$$\oint \frac{ds}{2\pi i} \frac{1}{s^3} \longrightarrow \bigcirc \Longrightarrow = \frac{2}{\pi} \int_{s_0}^{\infty} \frac{ds}{s^3} \quad \text{Im} \Longrightarrow \bigcirc \Longrightarrow \ge 0$$

IR: $s \sim 0$

$$\times$$
 (l.h.s.) = 4α

assumptions:

- poles & branch cuts on the shell
- analytic on the other points

analytic structure of 4pt amplitudes

in the forward limit \Longrightarrow $(s) \times s^{-3}$

consider a contour integral and deform the contour

IR: $s \sim 0$ UV: $s_0 \le s \le \infty$

 \times (l.h.s.) = 4α , so that positivity $\alpha \geq 0$ follows

in this way,

principles such as unitarity, analyticity and causality generically imply positivity of effective interactions

if this bound is violated, we should give up some of them

applications of positivity bound

Weak Gravity Conjecture from positivity bounds

- positivity of corrections to Einstein-Maxwell theory after integrating out massive charged particles

[Cheung-Remmen '14, Andriolo-Junghans-TN-Shiu to appear]

positivity in EFT of inflation

- positivity of primordial scalar 4pt functions [Baumann et al '15]
- positivity of primordial scalar 3pt functions [TN-Shiu in progress]

positivity in modified gravity such as massive gravity

[Cheung-Remmen '16, Bonifacio et al '16, de Rham et al '17]

summary messages

Landscape vs Swampland

- apparently consistent EFT can be problematic if we take into account the healthiness of UV completion
- better to check if your model is in landscape or swampland
- if experiments prefer what we think swampland, we need to drastically change our approach to UV theory

summary messages

Weak Gravity Conjecture

- compatibility with BH dynamics constrains IR physics
- upper bound on axion decay constant
 - → relevant to axion inflation, string axion DM, ...

positivity bound

- signs of effective interactions are generically constrained by unitarity, analyticity and causality
- ex. sign of primordial non-Gaussianity can be useful to check these QFT principles at inflationary scale!

cảm ơn!