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Dark Matter (DM):
• DM could consist of some ``cold’’ (small velocity dispersion) undiscovered particles  

• An alternative model: DM consist of very light bosons or axion-like particles with high 
occupation numbers                       

Standard cosmological model: ⇤CDM ! Dark contributions

To what extend is it possible to discriminate among the different models?

We need  

• to identify and characterize observable signatures 
• to confront with data all calculable predictions (on diverse scales)   

n = ⇢DM/m

Motivations
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Ultra-Light Dark Matter as a classical scalar field

[�⇤+m

2
�]�(~x, t) = 0Classical solution to the Klein-Gordon equation
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ULDM as a classical scalar field (on shorter scales)
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ULDM as a classical scalar field (on shorter scales)

� = e�ict/�c + eict/�c ⇤Collection of plane waves:

Compton wavelength

Gradients are relevant at length 
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Cosmic Microwave Background, Large Scale Structure

Lyman-alpha forest, Galaxy formation history, 
 structure of galactic halos, Pulsar-Timing-Arrays (PTA)

Observation on diverse scales can probe different mass ranges

21cm surveys Black Hole physics

Goal: To add more observables to this list, both to constraint other mass ranges 
and to have complementary tests for same masses   

Linear dynamics
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• These observations can probe ULDM interacting only through gravity 

• If ULDM is directly coupled to the Standard Model ->  many other (but 
model-dependent) possibilities: atomic clocks, accelerometers, resonant-
mass detectors, laser and atom interferometry 
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• Radio pulsar: rapidly rotating neutron star (NS) with coherent radio emission             
along their magnetic poles and highly stable spin frequency   

Binary pulsars

• Pulsar timing techniques provide very precise 
   measurements of the orbital motion 

• Ideal systems to constraint alternatives 
theories of gravity and the presence of  
gravity waves   

• Are they also useful to explore the nature of DM?
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• Radio pulsar: rapidly rotating neutron star (NS) with coherent radio emission             
along their magnetic poles and highly stable spin frequency   

Binary pulsars

• Pulsar timing techniques provide very precise 
   measurements of the orbital motion 

• Ideal systems to constraint alternatives 
theories of gravity and the presence of  
gravity waves   

• Are they also useful to explore the nature of DM?

• Coherence: ✓ v2 ⌧ c2

• Homogeneity: �db � L ✓ 

• Fast oscillations: tc ⌧ Pb ???
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ULDM interacting only through gravity
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  Pulsar Timing Array (PTA) [Khmelnitsky &  Rubakov (2014)]
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ULDM interacting directly coupled to matter

Universal coupling:
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ULDM interacting directly coupled to matter

Universal coupling:

Linear coupling ↵(�) = �/⇤1 Quadratic coupling ↵(�) = �2/(2⇤2
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• ULDM could yield secular variations of the orbital parameters of Binary Pulsars 
(BPs):   

- because its stress-energy tensor modifies the spacetime metric              
- if it is directly coupled to the Standard Model 

• The secular effect leads to potentially observable signatures in high precision 
timing measurements of pulsars in binaries 

• Exquisitely precise measurements are already ongoing for many systems 

• For the system to stay in resonance during the whole observational campaign, 
we estimate                                                                                                                                                   

   So, a  given BP is sensitive to ULDM masses only in a few narrow bands 

• New (~1000) BPs are expected to be discovered by SKA -> significant coverage 

• Beyond the orbital period derivative: there will also be secular variations of other 
orbital parameters  (D.Blas, DLN, and S. Sibiryakov, to appear) … 

• Other resonant effects? Dipolar radiation? …

Conclusions & future prospects

�m� ⇠ 5⇥ 10

�23
eV/(years of observation)







Beyond the orbital period derivative?

Phenomenological Timing model secular change of orbital parameters �
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Beyond the orbital period derivative?
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Beyond the orbital period derivative?

E.g. Double pulsar 
     Pulsar-related discoveries vs time

[Kehl, et.al. (2016)]

[Kramer & Ben Stappers (2014)]
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, �ė ⇠ T�3/2
obs

)

• If secular drift  ~ constant     accuracy  increases with T
obs



Periodic modulations?

A rough estimation:

(E.g., �Ṗb ⇠ T�5/2
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