The QUIJOTE-CMB Project 13th Rencontres du Vietnam

TROFIS

Lake

Frédérick Poidevin - Marie Curie IF Postdoc@IAC On Behalf of the QUIJOTE team 10/07/2017

Marie Skłodowska-Curie Actions under Horizon2020

Outline

- **★** Introduction
- **★** The QUIJOTE-CMB Experiment
- **★** The Multi-Frequency Instrument : MFI
- **★**The Thirty and the Forty GHz Instruments: TGI & FGI
- ★ Science with the MFI: Galactic Results and Foreground Characterisation
- \star Conclusion

CMB polarisation - Thomson scattering

- The CMB anisotropies are intrinsically polarized due to Thomson scattering
- A net polarization is generated during recombination in the presence of a quadrupole in the incident radiation field
 The resulting polarization is linear, i.e. the CMB will have non-zero Stokes parameters Q and U, but V=0

- Polarization maps can usually be decomposed into:
- **E-modes** (analog to gradient component)
- B-modes (analog to curl component)

E modes

B modes

Kamionkowski et al. 1997; Seljak & Zaldarriaga 1997

Different types of
 anisotropies in the primordial
 universe create different types
 of modes

	E-modes	B-modes
Scalar (density perturbations)	\checkmark	X
Tensor (gravitational waves)	\checkmark	\checkmark

$$r = \frac{P_{xessor}(k_0)}{P_{scalar}(k_0)} = 0.008 \left(\frac{E_{inf}}{10^{16} GeV}\right)$$

• $E_{inf}=2.6\times10^{16}$ GeV corresponds to r=0.37, and $E_{inf}=3.2\times10^{15}$ GeV to r=8.4×10⁻⁵

r=0.01 corresponds to the GUT scale (~10¹⁶ GeV)

•

Foregrounds. B-mode signal is subdominant over Galactic foregrounds

 Systematic program to study polarized astrophysical foreground signals is needed (see NASA-NSF report "Task Force on CMB research" and ESA-ESO report on "Fundamental cosmology", 2006)

QUIJOTE collaboration

Jodrell Bank Observatory

http://www.iac.es/project/cmb/quijote

QUIJOTE telescopes

 escopes
 QT1 (May 2012)

 MFI instrument (Nov 2012)

 • 10-20 GHz

 • FWHM = 0.92°-0.63°

W dom

QT2 (May 2014) TGI (May 2016) and FGI instruments • 30 and 40 GHz • FWHM = 0.37°-0.26°

QUIJOTE telescopes

Crossed-Dragone design
 Alto-azimutal mount
 Maximum AZ speed: 0.25 Hz = 15 rpm
 Minimum elevation: 30°

• Aperture: 2.25 m (primary) and 1.9 m (secondary)

Multi-Frequency Instrument (MFI)

- Observing since November 2012
- HEMT technology
- Stepping polar modulator (HWP) to modulate the incoming polarised signal
- 4 horns, 32 channels, covering 4 frequency bands: 11, 13, 17 and 19 GHz
- Sensitivities: ~400-600 μ K·s^{1/2} per channel

Multi-Frequency Instrument (MFI)

- Polar modulator (HWP): based on a turnstile junction, in waveguide
- Broad-band, cooled down in cryostat, and high performances:
 - Return losses < -20 dB
 - Insertion losses < -0.15 dB
 - Isolation < -40 dB

Multi-Frequency Instrument (MFI)

- FEM: partially-cooled feed-horn, polar modulator, OMT and LNAs
- BEM: phase adjuster, further amplification, band pass filter and correlation.
- Output: two channels (x) and (y) measuring Q (un-correlated), two channels (x+y) and (xy) measuring U (correlated)

- Continuous spinning of the polar modulators provides independent measurement of I, Q and U for each channel, while switching out the 1/f noise. But we operate in 4 discrete positions (0°,22.5°,45°,67.5°)
- Each of the four outputs are divided into a lower frequency and an upper frequency band.

Thirty and Forty-GHz Instruments

- The TGI First light: May 2016
- 30 pixels at 31 GHz
- Expected sensitivity of the full array: ~50 $\mu K \cdot s^{1/2}$
- The FGI will consist of 31 pixels at 42 GHz, with sensitivity ~60 µK·s^{1/2}

Cryostat (T = 20 K)

Science with the MFI

- **★** The MFI maps provide valuable information about the polarisation properties of:
 - <u>Synchrotron emission</u>: should dominate the emission at the MFI frequencies. WMAP 23 GHz shows it to be polarised at ~5-15%, depending on the Galactic latitude
 - <u>Anomalous microwave emission</u>: little known about its polarisation. Best upper limits on the polarisation fraction: <0.2% (Génova-Santos et al. 2016), previously <1% (LC11,

Science with the MFI

- Wide Galactic survey. Covering 20,000 deg² (finished 8000 hours)
 - ≈ 15 μK/(beam 1°) with the MFI @ 11, 13, 17 and 19 GHz, in both Q and U
- Deep cosmological survey. It will cover around 3,000 deg² (3 fields). After 1 year
 - ≈ 10 µK/(beam 1°) with the MFI @ 11, 13, 17 and 19 GHz

Science with the TGI and FGI

★ Left: example of the QUIJOTE-CMB scientific goal after the Phase I. It is shown the case for 1 year (effective) observing time with the TGI, and a sky coverage of $3,000 \text{ deg}^2$. The red line corresponds to the primordial B-mode contribution in the case of $\mathbf{r} = 0.1$

★ Right: QUIJOTE-CMB Phase II. Here we consider 3 years of effective operations with the TGI, and that during the last 2 years, the FGI will be also operative. The red line now corresponds to r = 0.05

QUIJOTE fields

Wide survey

 \star

 \star

★ Full coverage of the northern sky in nominal mode (telescope rotates in AZ at 12 deg/s at various fixed elevations)

Total of 8000h over 20,000 deg^2

Expected sensitivities: ~15 $\mu K/beam$ in Q,U and, ~50 $\mu K/beam$ in I

Wide survey

 \star

 \star

★ Full coverage of the northern sky in nominal mode (telescope rotates in AZ at 12 deg/s at various fixed elevations)

Total of 5000h over 20,000 deg^2

Expected sensitivities: ~15 $\mu\text{K/beam}$ in Q,U and, ~50 $\mu\text{K/beam}$ in I

Perseus molecular complex

- ~200 hours, 12/2012 to 04/2013, on an area covering ~250 deg² around the Perseus molecular complex.
- One of the brightest AME regions on the sky (Watson et al. 2005, Planck collaboration 2011)
- Final integration time ~3000 s/beam, yielding a final map sensitivity of ≈30 µK/beam

First QUIJOTE paper: Génova-Santos et al. (2015), MNRAS, 452, 4169

Perseus molecular complex

• AME (spinning dust) shows up at intermediate frequencies

• Most precise spinning dust spectrum to date (13 independent data points in the relevant range)

• No polarisation detection.

• Π < 6.3% at 12GHz and < 2.8% at 18GHz (95% C.L.)

W43, W44 and W47

Second QUIJOTE paper Génova-Santos et al. 2017, MNRAS, 464, 4107

Galactic plane survey 25° < l < 45°

W43 and W47 are molecular complexes, and W44 is a SNR

W43r

QUIJOTE

WMAP

O Planck

100

The Taurus Molecular Cloud Complex

Poidevin al. (in prep.)

- Map obtained from of about 423 hours of observations
- RFI filtered
- I,Q,U Stokes parameters maps
- Taurus is a faint region at the MFI frequencies -> CMB subtracted at the map level

Horn	Freq.	$\sigma_{\rm I}~(\mu{\rm K/beam})$		$\sigma_{ m Q}$ (µF	$\sigma_{\rm Q}~(\mu{\rm K/beam})$		K/beam)	$\sigma_{ m Q,U}~(m mK~s^{1/2})$	
	(GHz)	Map	JK	Map	JK	Map	JK	JK	
1	11	77.3	57.1	21.1	16.3	24.4	18.9	1.0	
1	13	54.7	41.5	17.0	12.2	15.8	12.4	0.7	
2	17	132.5	89.4	30.6	20.9	21.4	21.6	1.1	
2	19	193.8	138.2	34.3	32.4	34.0	40.2	1.8	
3	11	87.8	66.8	26.4	17.9	26.9	18.5	1.0	
3	13	65.6	50.2	27.2	19.5	27.5	20.7	1.1	
4	17	147.7	103.8	23.3	17.5	23.4	19.6	0.9	
4	19	201.9	140.6	34.5	22.6	30.1	29.8	1.3	

Maps sensitivities

Taurus Complex

Poidevin al. (In Prep.)

Left: QUIJOTE map at 13 GHz - Right: Planck map at 353 GHz The QUIJOTE map mainly probe AME while the Planck map probe Thermal Dust.

Left: Free-Free map as calculated from the H(alpha) map (Dickinson etal. 2003). Right: Synchrotron map once the Free-Free has been subtracted. -> The Free-Free contribution in the Taurus region is of order a fraction of a percent in the temperature maps at 0.408 GHz and 1.420 GHz.

The Taurus Molecular Cloud Complex

Poidevin al. (in prep.)

Characterisation of the AME with the QUIJOTE 11 GHz and 13 GHz maps.

EM (cm^6/pc) Amplitude of the free free at 1 CHz (Jy) 0.3 +/-79.8	SED Component Separation Parameter	Value
Amplitude of the free free at 1 GHz (3y) $0.0 +/2 0.3$ Amplitude of the synchrotron at 1 GHz (Jy) $45.6 +/- 6.9$ Beta of the synchrotron at 1 GHz $-0.87 +/- 0.12$ Frequency of the peak of the spinning dust emission (GHz) $21.0 +/- 0.0$ Maximum spinning dust emission (Jy) $44.1 +/- 0.0$ Tdust (K) $15.5 +/- 0.6$ beta dust (K) $1.52 +/- 0.07$ tau250 (K) $0.0043 +/- 0.0008$	EM (cm ⁶ /pc) Amplitude of the free-free at 1 GHz (Jy) Amplitude of the synchrotron at 1 GHz (Jy) Beta of the synchrotron at 1 GHz Frequency of the peak of the spinning dust emission (GHz) Maximum spinning dust emission (Jy) Tdust (K) beta dust (K) tau250 (K)	$\begin{array}{c} 0.3 +/- 79.8 \\ 0.0 +/- 8.8 \\ 45.6 +/- 6.9 \\ -0.87 +/- 0.12 \\ 21.0 +/- 0.0 \\ 44.1 +/- 0.0 \\ 15.5 +/- 0.6 \\ 1.52 +/- 0.07 \\ 0 .0043 +/- 0.0008 \end{array}$

Top: cloud region. Bottom: background

http://www.radioforegrounds.eu

H2020-COMPET-2015. Grant agreement 687312: "Ultimate modelling of Radio Foregrounds" (RADIOFOREGROUNDS).

3-year grant (IAC; IFCA; Cambridge; Manchester; SISSA; Grenoble; TREELOGIC).

This project will provide specific products:

- a) state-of-the-art legacy maps of the synchrotron and the anomalous microwave emission (AME) in the Northern sky;
- b) a detailed characterization of the synchrotron spectral index, and the implications for cosmic-rays electron physics;
- c) a model of the large-scale properties of the Galactic magnetic field;
- a detailed characterization of the AME, including its contribution in polarization; and d)
- e) a complete and statistically significant multi-frequency catalogue of radio sources in both temperature and polarization.
- specific (open source) software tools for data processing, data visualization and public f) information.

CMB polarization experiments

Name	Platform	Area [°]	FWHM	Freq [GHz]	Detectors	r _{lim}	Starts
BICEP	Ground	800	$\sim 1^{\circ}$	100,150	PSB bol.	0.1	2010
QUIET-II	Ground	1600	4'-30'	40,90	MMIC HEMT	0.01	2010
QUIJOTE	Ground	5000	$\sim 1^{\circ}$	10-40	MMIC HEMT	0.05	2012
PolarBear	Ground	1200	3'-7'	$90,\!150,\!220$	TES Bol.	0.01	2012
QUBIC	Ground	800	$\sim 1^{\circ}$	$90,\!150,\!220$	Bol. Interf.	0.01	2014
ACTPol	Ground	4000	~ 1'	$150,\!218,\!277$	Bolometer	0.03?	2013
SPTPol	Ground	500	1'-1.6'	$100,\!150,\!220$	TES Bol.	0.03	2013
EBEX	Balloon	350	8'	$150,\!250,\!350,\!450$	TES Bol.	0.03	2012
SPIDER	Balloon	24000	17'-50'	$90,\!145,\!280$	TES Bol.	0.03	2013
LSPE	Balloon	9500	30'	40-250	Bol.+HEMTs	0.03	2015
Planck	Satellite	Full sky	5'-33'	30-353	MMIC/Bol.	0.05	2009
LiteBIRD	Satellite	Full sky	30'	50-270	TES Bol.	0.001	2020
PIXIE	Satellite	Full sky	1.6°	30-6000	Bolometers	0.0005	2018?
EPIC/CMBPol	Satellite	Full sky	~10'	30-300	Bolometers	0.001	2025?

- Studies of the CMB temperature anisotropies, reflecting scalar (density) perturbations in the LSS 380,000 years after the Big Bang, have consolidated the ΛCDM model
- The study of the polarization of the CMB opens a new window to study tensor (gravitational waves) perturbations from the inflationary epoch only 10⁻³⁶s after the Big Bang
- Detection of the B-mode signal requires i) high sensitivity in large angular scales, ii) accurate characterisation and subtraction of foregrounds (thermal dust, but also maybe synchrotron)
- ★ Therefore we need: i) high number of detectors with good sensitivity, ii) large sky coverage, iii) accurate control of systematics, iv) different frequency channels with wide frequency coverage (⇒ combination of different technologies)
- QUIJOTE covers 10-40 GHz (synchrotron, spinning dust). One year of observations with the TGI could allow to reach a sensitivity r=0.1. Three years TGI+FGI would allow r=0.05
- Joint QUIJOTE+GroundBIRD (same angular resolution, different frequencies) analysis could potentially allow for even more stringent *r* constraints, and simultaneous correction for synchrotron+dust for possible future experiments operating at intermediate frequencies (~90 GHz)