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Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott et al.”

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10~2!. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater

than 5.16. The source lies at a luminosity distance of 410715 Mpc corresponding to a redshift z = 0.0970 0.
In the source frame, the initial black hole masses ar€ 36 M, and 297 M, Jand the final black hole mass is

624 M, with 3.070:2 M, c? radiated in gravitational waves. AtKUncertainties define 90% credible intervals.
These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102 Pri mord ial blaCkholef?

Bird, Cholis, Munoz, Ali-Haimoud, Kamionkowski,
Kovetz, Raccanelli, Riess, 1603.00464

Clesse, Garcia-Bellido, 1603.05234
Sasaki, Suyama, Tanaka, Yokoyama, 1603.05234




Primordial blackhole (PBH)

forms from direct collapse of the cosmic fluid in the early universe
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PBH formation

Power spectrum of curvature perturbation
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PBH formation

Power spectrum of curvature perturbation
Pc(k)
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Single component fluctuation (inflaton)

running mass inflation, double inflation, ...



PBH formation

Power spectrum of curvature perturbation
Pc(k)
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Multi-field fluctuation : inflaton + curvaton
Kawasaki, NK, Yanagida, 1207.2550



PBH as dark matter / seed of SMBH

PBHs with Mpgn > 10°g
/ (partially)

()
PBH http://www.sdss3.org/

Opwm l

PBH fraction : feea =

. supermassive BH with 10° M,

@

PBH with Mpgn > 10* Mg



Current constraint on PBH mass & abundance
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PBH number fluctuation and halo mass function



Poisson fluctuation of PBH number

PBH is a rare object, randomly & sparsely forms in space

PBH

PBH formation probability < 107
0 In each horizon patch




Poisson fluctuation of PBH number

PBH is a rare object, randomly & sparsely forms in space

comoving scale much larger than the horizon scale at formation

—> each region can e one realization of statistical ensemble



Poisson fluctuation of PBH number

PBH is a rare object, randomly & sparsely forms in space
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—> NpgH follows the Poisson distribution function



Poisson fluctuation of PBH number

Poisson distribution function
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Linear matter power spectrum
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Smoothed variance
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Halo mass function
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21cm fluctuations from minihaloes



21cm Cosmology —probe of the DARK AGE-

What is the Reionization Era?

A Schematic Outline of the Cosmic History
< The Big Bang

Time since the
Big Bang (years) ’

The Universe filled
} v | with ionized gas

~ 300 thousand <4-The Universe bacomes

neutral and opaque

The Dark Ages start

Galaxes and Quasars
begin to form

~ 500 million The Reionization starts

The Cosmic Renaissance
The Dark Ages end

~ 1 billion <-Reionization complete,

the Universe becomes
transparent again

Galaxies evolve

~ 9 billion
The Solar System forms

~ 13 billion Today: Astronomers

figure it all out!

S.G. Djorgovski et al. & Digital Media Center, Caltech

- The universe is filled with
neutral hydrogen atoms

- non-linear objects appear

l

small-scale power affects
the minihalo abundance,
21cm emission signal




21cm emission/absorption signal
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Density & temperature profile of minihalo (TIS model)
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21cm differential brightness temperature
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Brightness temperature for photons coming through a single minihalo
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Differential brightness temperature w.r.t. CMB
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SKA (-like) observation
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Fluctuation of brightness temperature
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f PBH

PBH constraint from SKA

Mpgp/Ms  Gong, NK,1704.04132



f PBH

PBH constraint from SKA

LIGO event
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Summary

- PBH number fluctuates following the Poisson distribution and
it contributes to the matter power spectrum as an isocurvature mode,
which is dominant on small scales

- The Poisson fluctuation can change the halo mass function
The number of small haloes can be significantly enhanced

- 21cm emission signal can be enhanced
and SKA can put a new constraint on PBH mass/abundance
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Halo power spectrum
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