Small-scale structure and 21cm fluctuations by Primordial Blackholes

Naoya Kitajima

arXiv:1704.04132 in collaboration with Jinn-Ouk Gong (APCTP)

13th Rencontres du Vietnam, Cosmology, 2017/7/9-15, Qui Nhon

Outline

1. Introduction / motivation

2. Primordial blackhole and halo mass function

3.21cm signals

S

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ . The source lies at a luminosity distance of 410^{+160}_{-180} Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

Primordial blackhole?

Bird, Cholis, Munoz, Ali-Haimoud, Kamionkowski, Kovetz, Raccanelli, Riess, 1603.00464

Clesse, Garcia-Bellido, 1603.05234

Sasaki, Suyama, Tanaka, Yokoyama, 1603.05234

Primordial blackhole (PBH)

forms from direct collapse of the cosmic fluid in the early universe

PBH formation

PBH formation

Single component fluctuation (inflaton)

running mass inflation, double inflation, ...

PBH formation

Multi-field fluctuation : inflaton + curvaton

Kawasaki, NK, Yanagida, 1207.2550

PBH as dark matter / seed of SMBH

Current constraint on PBH mass & abundance

PBH number fluctuation and halo mass function

PBH is a rare object, randomly & sparsely forms in space

PBH is a rare object, randomly & sparsely forms in space

comoving scale much larger than the horizon scale at formation -> each region can be one realization of statistical ensemble

PBH is a rare object, randomly & sparsely forms in space

 $->N_{PBH}$ follows the Poisson distribution function

Poisson distribution function

$$\mathbb{P}(N_{\rm PBH}) = \frac{\lambda^{N_{\rm PBH}} e^{-\lambda}}{N_{\rm PBH}!} \quad \text{with} \quad \lambda = \langle N_{\rm PBH} \rangle = \langle \delta N_{\rm PBH}^2 \rangle$$

$$\begin{split} \rho_{\rm PBH} &= \bar{\rho}_{\rm PBH} (1 + \delta_P) e^{-3\delta N} \ \text{ at PBH formation} \\ &\searrow_{\rm Poisson \, fluctuation} \\ &\longrightarrow_{\rm PBH \, density \, contrast}: \ \delta_{\rm PBH} = \delta_P + \frac{3}{4} \delta_r \quad \underset{\scriptstyle \swarrow}{\rm PBH \, fraction} \\ &\swarrow_{\rm CDM \, isocurvature \, perturbation}: \ S &= \delta_{\rm DM} - \frac{3}{4} \delta_r = f_{\rm PBH} \delta_P \end{split}$$

Power spectrum of isocurvature perturbation :
$$P_{iso}(k) = \frac{f_{PBH}^2}{n_{PBH}}$$

PBH comoving number density

Linear matter power spectrum

$$P_{\rm iso}(k,z) \simeq 0.025 f_{\rm PBH} \left(\frac{M_{\rm PBH}}{30M_{\odot}}\right) D^2(z) \,\,{\rm Mpc}^3 \quad \text{for} \quad k \gtrsim 0.05 \,\,{\rm Mpc}^{-1}$$

Smoothed variance

$$\sigma^{2}(R) = \int_{0}^{\infty} \frac{dk}{k} \frac{k^{3} P(k)}{2\pi^{2}} W^{2}(kR)$$
$$P(k) = P_{\text{adi}}(k) + P_{\text{iso}}(k)$$

Halo mass function

$$\frac{dn}{dM} = \frac{\rho_m}{M} \frac{d\ln\sigma^{-1}}{dM} f(\sigma)$$

21cm fluctuations from minihaloes

21cm Cosmology –probe of the DARK AGE–

- The universe is filled with neutral hydrogen atoms

- non-linear objects appear

small-scale power affects the minihalo abundance, 21cm emission signal

21cm emission/absorption signal

Density & temperature profile of minihalo (TIS model)

Spin temperature:
$$\frac{n_1}{n_0} = 3 \exp\left(-\frac{T_*}{T_s}\right)$$
 energy splitting:
 $T_* = 0.068 \text{ K}$
21cm differential brightness temperature

minihalo contribution > $T_S \gg T_{CMB}$ > emission signal

Brightness temperature for photons coming through a single minihalo

$$T_b(\nu, \alpha, z) = T_{\rm CMB}(z)e^{-\tau(\nu)} + \int_{-\infty}^{\infty} dR \, T_S(\ell)e^{-\tau(\nu, R)} \frac{\partial \tau}{\partial R}$$

Iliev, Shapiro, Ferrara, astro-ph/0202410

 $\mathbf{k} R$

 α

Differential brightness temperature w.r.t. CMB

$$\delta T_b = \frac{\langle T_b \rangle}{1+z} - T_{\rm CMB}(0)$$

Average over halo masses

$$\overline{\delta T_b} = \frac{c(1+z)^4}{\nu_* H(z)} \int_{M_{\min}}^{M_{\max}} \Delta \nu_{\text{eff}} \delta T_b(M) A \frac{dn}{dM} dM$$

r.m.s smoothed over a survey volume

$$\langle \delta T_b^2 \rangle^{1/2} = q \sigma_p (\Delta \theta_{\text{beam}}, \Delta \nu_{\text{band}}) \beta(z) \overline{\delta T}_b$$

SKA (-like) observation

$$\delta T_{\text{noise}} = 20 \text{ mK} \frac{10^4 \text{ m}^2}{A_{\text{tot}}} \left(\frac{10 \text{ arcmin}}{\Delta \theta_{\text{beam}}}\right)^2 \left(\frac{1+z}{10}\right)^{4.6} \left(\frac{\text{MHz}}{\Delta \nu_{\text{band}}} \frac{100h}{t_{\text{int}}}\right)^{1/2}$$

Furlanetto, Oh, Briggs, astro-ph/0608032 $A_{\text{tot}} = 10^5 \text{ m}^2, \Delta \theta_{\text{beam}} = 9 \text{ arcmin}, \Delta \nu_{\text{band}} = 1 \text{ MHz and } t_{\text{int}} = 1000 \text{ h}$

Fluctuation of brightness temperature

PBH constraint from SKA

PBH constraint from SKA

Summary

- PBH number fluctuates following the Poisson distribution and it contributes to the matter power spectrum as an isocurvature mode, which is dominant on small scales
- The Poisson fluctuation can change the halo mass function The number of small haloes can be significantly enhanced

- 21cm emission signal can be enhanced and SKA can put a new constraint on PBH mass/abundance

Halo power spectrum

