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Weak Lensing: Cosmic Shear

'‘Cosmic Shear’: Gravitational lensing by large-scale structure.
unbiased tracer of dark matter.
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Thermal Sunyaev-Zeldovich Effect

CMB Hot gas (galaxy cluster) Observer

z~3-0 z=0

Sunyaev and Zel’dovich (1972, 1980)
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tSZ by Planck

* The all-sky thermal Sunyaev-Zel'dovich effect
has already been measured by Planck.
The power spectrum of Compton-y can place

a tight constraint on os.
(c.f. Komatsu and Seljak, 2002).
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Cross-Correlation of tSZ and WL

* Astrophysics and Cosmology with WL and tSZ
Power spectra of WL and tSZ give us information of the large-scale
structure in the Universe and are very useful to constrain
cosmological models. However, the combination of them
(cross-correlation) provides us with additional and independent
information.
Furthermore, tSZ directly reflects gas distribution. We can obtain
implications on cluster astrophysics as well.

* From the observational aspect
Cross-correlation does not suffer from noise auto-correlation
in the assumption that noises of different observables
are uncorrelated.

<AObSBObS> — <AB>7 Aobs = A + NA7 Bobs = b + NB



Measurements of Cross-Correlation

2PCFs

4+Several groups have already reported the detection of
the cross-correlation.

CFHTLenS x Planck e RCSLenS x Planck
(Van Waerbeke+, 2014) (Hojjati+, 2016)
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Models

+First, let us consider the model of the signal.

* Theoretical prediction of auto- and cross-power spectra

Spectra can be decomposed into two terms based on halo model.
well calibrated by N-body sim.

) Tinker et al. (2008, 2010)
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Analytic Model of Gas Profiles

+We employ the analytic gas density/pressure profile model
of individual halo, which is proposed by Shaw+ (2010) and
improved by Flender+ (2017).
The model contain six free parameters,
each of which describes a physical process
(e.g., SNe/AGN feedback, non-thermal pressure).

» Basic ideas 0,
DM density follows NFW profile. PPM = (r/r5) (1 + 7/75)2
Gas profile is determined from Euler eq. with polytope relation.

dj;:)t = —pgy(r) dq;ir), P,ot x p, hydro. sim. suggests '~1.2

To determine the normalization,
stellar and AGN feedback

Eg; = Eg; + epm|Epm| + eeMec” + AE,

Energyof gas  yhamical friction between gas and DM work by gas expansion




Gas Profile Model

4+Non-thermal pressure

Turbulent motion also can support the self-gravity of the halo.
This effect is parametrized as,

Pnth
P ) 042 (

r\"° Note: only thermal pressure
R500 contributes as tSZ.

* Free parameters are calibrated by gas density and
gas fraction of X-ray clusters. We fix parameters other than alpha.

z=0.071 104 _ ................

LRI, S

>N

) 2

omm 10 3 : ’_‘G)

2 | == this work =

o i = = Shaw+10 ‘E 1008 L. AR

n &

cg) = @ 1@ Lovisari |]
. 9 1@ Vikhlinin |]

10%2 AT — this work |4
- - Shaw+10|]
08 0% 108

M0 [M ] Flender+ (2017)



Covariance Estimation

4Let us move on covariance matrix estimation.
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In order to estimate covariance matrix,
we employ N-body simulations.

Box size: (1 Gpc/h)’

# of particles: 20483

Cosmology: Planck 2015

The snapshots cover up to z=4.13.
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WL: Multiple plane method (White & Hu, 2000)

tSZ: First, we find halos with Rockstar (Behroozi+, 2013).
For each halo, we solve the analytic model, and assign
thermal pressure to the member particles.



Covariance Estimation

WL: Multiple plane method (White & Hu, 2000)
tSZ: First, we find halos with Rockstar (Behroozi+, 2013).
For each halo, we solve the analytic model, and assign

thermal pressure to the member particles.



Covariance Estimation

tSZ: First, we find halos with Dcr!<f:tar(Behrcozi+, 2N1R2),

For each halo, we solve the analytic model, and assign
thermal pressure to the member particles.
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Cross-Correlation Function
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Constraints on Non-thermal Pressure

* Non-thermal pressure
Non-thermal contribution is hard to measure by conventional

X-ray observations of clusters.
However, the power spectrum and the cross-correlation
are sensitive to it and can be used to estimate its contribution.

Note: Non-thermal pressure and og are strongly degenerate.

Power spectrum of Compton y Cross-correlation function
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Constraints from Cross-Correlation

* We can constrain the amplitude of non-thermal pressure and og

with power spectrum and cross-correlation.

1.0

Pnth B r U8
(r) = a(1+ 2)
0.9 Lot Rs00
\ /
| Ve ) AN
e 0
o Both \.\\,\9
& 0.7- e
/ 4
0.6 1 Z
2>
=
0.5 1 Cross only
0.4

o7

0.00 005 010 015 020  0.25

0.30
KO+ (2017)



Removing Small Scales Correlations

1. Halo model assumption breaks down.
2. Incomplete separation from foreground contamination
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Source of Tension

* The analytic model is calibrated with galaxy clusters and
low-z galaxy groups. However, high-z groups contribute to a
substantial fraction of signal. At this range, analytic model
inevitably contains uncertainty.

e Contribution from high-z groups (z > 0.2 and Msgoc < 4 x 1074 Mg, /h)
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Possible Solution of Tension

e Let us consider an extreme case of enhanced star formation
for group size halos.
That corresponds to severe depletion of hot gas for such halos.
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Summary

*\Weak lensing and thermal Sunyaev-Zel'dovich effect are
promising probes into the large-scale structure.

*Theoretical modeling and simulations can be
used to estimate the signal and covariance matrix.

*The cross-correlation of them can provide us
with additional information of cosmology and
cluster astrophysics.

*We are currently working on the measurement of
the cross-correlation with HSC and Planck data.



