Resolving the extended atmosphere and the inner wind of Mira (*o* Cet) with long ALMA baselines

Ka Tat Wong

(Hoàng Gia Đạt)

Max Planck Institute for Radio Astronomy (MPIfR, Bonn)

Tomasz Kamiński (ESO/Chile; MPIfR) Karl M. Menten (MPIfR) Friedrich Wyrowski (MPIfR)

Blowing in the Wind 2016, ICISE, Việt Nam

Bonn-Cologne Graduate School of Physics and Astronomy

Max-Planck-Institut für Radioastronomie

Outline

- Extended atmosphere, previous obs.
- ALMA long baseline observation
 - > continuum
 - images + spectra
- Radiative transfer modelling
 - molecular abundances
 - inner dust shells
 - kinematics
- Comparison with hydrodynamical models
- SiO masers, detailed continuum analysis

Extended atmosphere

Hydrodynamical models

- Ireland/Scholz/Wood (2008; 2011; 2014)
 - ♦ CODEX model series
- Jeong et al. (2003)
- Höfner et al. (in press)

DARWIN models
 → Sofie Liljegren's talk

Probing the extended atmosphere

- Molecular absorption spectroscopy (ISO)
 - → "MOLsphere" (e.g. Tsuji+ 97, Tsuji 00; Woitke+ 99)
- SiO/H₂O maser emission (VLA/VLBA) (e.g. Reid & Menten 97, 07; Cotton+ & Perrin+ 04, 09, 10, 15)
- Mid-IR interferometry (VLTI) (e.g. Ohnaka et al. 2005; Karovicova et al. 2011)

2nd generation VLTI instru.
→ Xavier Haubois' talk

High spatial resolution images

(Sub)millimetre thermal line emission <u>& absorption</u>

2014 Long Baseline Campaign

Band 6 data

• 229.6 GHz (1.3 mm) continuum

(Matthews et al. 2015; Vlemmings et al. 2015; Planesas et al. 2016; this work)

- SiO v = 0, 1, 2 J = 5 4
- ²⁹SiO v = 0 J = 5 4
- H_2O $v_2 = 1$ $J(K_a, K_c) = 5(5, 0) 6(4, 3)$
- H30α (Radio Recomb. Line) (no detection)
- Angular resolution: 30 32 mas
- Velocity resolution: 0.08 0.17 km/s

Band 6 data

• 229.6 GHz (1.3 mm) continuum

Vlemmings et al. (2015)

Band 6 data

- 229.6 GHz (1.3 mm) continuum
- $\Delta V = 20.5$ km/s
- Bandwidth = 2 GHz

T. Kamiński, K. T. Wong et al.

- multi-epoch spectral line obs.
 (1965 2015; mm optical)
- clumpy, inhomogeneous distribution of AIO
- irregular temporal variation

Channel maps: SiO & ²⁹SiO v = 0

Channel maps: SiO $v = 2 \& H_2 O v_2 = 1$

SiO & H₂O spectra

Inverse P-Cygni profile

SiO v = 2 (5-4)

 $H_2O v_2 = 1 5(5,0) - 6(4,3)$

 $H_2O v_2 = 1 5(5,0) - 6(4,3)$

Testing codex models

- o54 series: 6 cycles (Ireland et al. 2008; 2011)
- predict $\rho(r)$, T(r), v(r)
- select models near phase ~0.45 (SV obs.)
- reproduce SiO & H₂O spectra

chaotic shocks

Thanks M. J. Ireland, M. Scholz, and P. R. Wood for providing the results of the **o54** model series.

Astronomical Society © 2011 RAS

CODEX models

- $n_{\rm H_2}(r) \gtrsim 10^{12} \, {\rm cm}^{-3}$ near radio photosphere to reproduce enough absorption (consistent with Reid & Menten 1997 & Yamamura et al. 1999)
- $\rho(r) \rightarrow n_{\mathrm{H}_2}(r)$: gas density underestimated by $10^2 - 10^4$ times

Summary

- 1. ALMA long baselines clearly resolve SiO & H_2O line absorption against Mira's radio continuum.
- 2. Gas-phase SiO starts to deplete significantly at radius $\geq 4R_{\star}$ and temperature $T_{kin} \leq 600$ K.
- 3. The extended atmosphere generally shows infall motion, with shock velocity $\Delta V \leq 12 \text{ km s}^{-1}$.
- 4. Hydrodyn. models from **CODEX** can predict the atmospheric structures in remarkable detail.

