The Monash Chemical Yields Project

Carolyn Doherty (Konkoly Observatory)
George Angelou
Simon W. Campbell
Ross Church
Thomas Constantino
Sergio Cristallo
Pilar Gil-Pons
Amanda Karakas
John Lattanzio
Maria Lugaro
Richard Stancliffe

MoCA
Monash Centre for Astrophysics

Argelander-Institut für Astronomie

MPS

Universitat Politècnica de Catalunya
BarcelonaTech

University of Exeter

Lund University

Konkoly Observatory

MPG
Max-Planck-Gesellschaft

OACT

Element production

Low- and intermediate stars are important for galactic chemical evolution as they enrich the environment with C, N, F, and $\sim \frac{1}{2}$ of all of the elements past Fe via the s-process.

Goal: to produce a large and homogeneous set of (single star) nucleosynthetic yields for low and intermediate mass stars.
Overview

* Low & intermediate mass star evolution (AGB stars)
* Computational programs
 * Our computational grid
 * Mass loss rates?
* Low metallicity models
* Proton ingestion episodes
* Summary & Conclusions
AGB Stars Recap

Stars in the mass range
~ 0.8 – 10 Msun

After core H & He (& C) burning they enter the thermally pulsing AGB phase which consists of alternating H & He shell burning phases

Strong mass loss erodes the envelope to leave a CO (or ONe) white dwarf

TP-AGB nucleosynthesis: Third dredge up events
Hot Bottom burning
Hot Bottom burning (HBB)

Base of the convective envelope reaches high enough temperatures for proton capture reactions

Increasing HBB temperature with increasing mass

~ 30-150 MK

Increasing HBB temperature

CNO Cycles

Minimum mass for HBB decreases with decreasing metallicity

~4-5 Msun solar

~2-3 Msun low Z

Activation of

* CNO cycles
* Ne-Na cycle
* Mg-Al-Si chain
Mass & metallicity coverage

IMF Weighted yields

Doherty et al. 2014a (inc Karakas 2010)

Some isotopes are only produced in narrow mass range – we want to capture these peaks

Galactic Globular cluster Z distribution

Harris 1996

Heavy element observations

Busso et al. 2001

* Globular clusters
* CEMP -s stars
* First Stars
* Super-solar

Harris 1996
Programs used

2 step process: Evolution calculations then post-processing nucleosynthesis

Evolution (MONSTAR)
Monash version of Mount Stromlo stellar program
(e.g. Campbell & Lattanzio 2008, Karakas 2010, Doherty et al. 2015)

1D hydrostatic code

- No rotation
- No magnetic fields

* Low temperature variable composition opacities from ÆSOPUS (Marigo & Aringer 2009) & updated equation of state to OPAL & Helmholtz (see Constantino et al. 2014).

Nucleosynthesis (MONSOON)
Modified Monash nucleosynthesis code (Church et al. 2009)

475 or 717 nucleosynthesis species
Enough to follow heavy element production in low/intermediate mass stars
The Monash Chemical Yields Project

Goals:

Preliminary!!!

The Monxey project provides a large and homogeneous set of stellar yields for the low- and intermediate- mass stars and has applications particularly to galactic chemical evolution modelling.

Monxey Grid

Contact Information

Email:
Carolyn Doherty
cstx.mta.hu
Heavy element works

Only listed groups with computed yields

Teramo Group
E.g. Cristallo et al 2011, Straniero et al 2014

Monash Group

NUGRID
Pignatari et al. 2016
Mass loss rate?

Currently we use

RGB phase: Reimers eta 0.4

AGB phase: Vassiliadis & Wood 1993

Low metallicity?
13C pockets

Main s-process component in the solar system stars in mass range ~ 1-3 Msun

Not enough c13 within in the intershell to produce these heavy elements so we must artificially introduce a c13 pocket, which is added at deepest extent of 3DU

Shaded region mainly overlaps where stars will become C/O > 1

We insert a partially mixed zone (PMZ) for 13C pocket
Low metallicity AGB stars

Update to the light element, low mass, low Z AGB star yields

OLD Model results

Constantino et al. 2014 (+ works Marigo & collaborators)

Currently handful of heavy element nucleosynthesis predictions for low Z
Goriely & Siess 2001, Campbell et al. 2010, Cruz et al. 2013

Inclusion of low temp. variable compositional molecular opacity shortens duration of the TP-AGB phase and reduces HBB temperatures

NEW models: Greatly reduced 3DU/HBB products and lower mass white dwarfs

Campbell & Lattanzio 2008
Proton ingestion episodes (PIEs)

Low Z, low mass AGB stars Convective He burning region comes in contact with H rich region
Protons are ingested (PIE) where it has high temperature and density
Production of ^{13}C from ^{12}C and then activation of the $^{13}\text{C}(\alpha,\text{n})^{16}\text{O}$ neutron source e.g. Fujimoto et al. 1990, Lau et al. 2009, Campbell et al. 2008/10, Herwig 2011, Bertolli et al 2013 etc

Dredge-out event in massive Super-AGB stars
Similar to above – but H comes from envelope

High neutron densities (~ $10^{15} \text{ n cm}^{-3}$)
s/r or i process nucleosynthesis

With the high neutron densities the abundances can venture far from beta stability i-process (Cowen & Rose 1977)

s-process
Sr, Y, Zr, Ba, La and Pb

r-process
Eu, Pt

Stable isotopes

r-process code from Petermann et al. 2012
1-zone trajectories
What elements do these events produce?

Are they important?

These types of events may produce the correct abundance patterns of the CEMP s/r stars

Interestingly massive Super-AGB stars may explode as EC-SN

PIEs

Proton ingestion episodes (PIES)
Summary and Conclusions

Low and intermediate mass star nucleosynthetic calculations and stellar yields have a large range of applications from Galactic Chemical evolution, presolar grain abundances comparisons, planetary nebula studies, CEMP-s (s/r) etc.

- Large range of uncertainties such as:
 - c13 pockets, size, shape (and cause)
 - convective boundary mixing (3DU efficiency)
 - nuclear reaction rates
 - interplay between mixing and burning etc etc.

- But arguably the most important is
 - Mass loss rates (especially at low metallicity!)

Computations for the MonXey project are underway
We expect a release of the first results later this year

MonXey