Binary Origin of CH and Ba stars: Observational perspectives Drisya Karinkuzhi Indian Institute of Astrophysics Bangalore, India.

Collaborators: Aruna Goswami, Sivarani Thirupathi, Susmitha Rani Antony, Arun Surya

11.08.2016

Introduction

Metal-poor stars : HK survey and HES survey [Fe/H] = log $(N_{Fe}/N_{H})_{*}$ - log $(N_{Fe}/N_{H})_{sun}$

Carbon-Enhanced Metal-Poor (CEMP) Stars

 a. Intrinsic : Deep mixing process in AGB stars
 b. Extrinsic : Mass transfer of carbon rich materials

 Different groups of CEMP stars: CH, C-R, C-N, C-J

Different groups of CEMP stars: CH, C-R, C-N and C-J

- CH : high radial velocity, strong G band of CH, enhancement of heavy neutron-capture elements, binary system.
- C-R : warmest carbon stars, strong G band, solar abundance for heavy neutron-capture elements.
- C-N : Coolest carbon stars with strong molecular bands and high isotopic ratios, Intrinsic carbon stars
- C-J : Strong merril-sanford band around 4900 Å, low isotopic ratios, no indication of binarity

Classification Of CEMP stars : Identification of CH stars

- Analysed 111 metal-poor stars (HES survey) using spectra obtained from 2m HCT, Hanle, India, with resolution 1330, WL 3800 - 6800 Å
- Results: Identified 38 potential CH star candidates along with 13 C-N stars and 9 C-R stars
 - Ref: Goswami , Karinkuzhi and Shantikumar, MNRAS (2010a) Goswami, Karinkuzhi and Shantikumar, MNRAS (2010b)

High Resolution spectroscopic analysis of CH star candidates

• Aim : Determination of atmospheric parameters and chemical abundances

- Data: Elodie archive, WL :4000 6800 Å,
 - : HDS attached to the 8m Subaru
 - : FEROS, WL : 3800-9000 Å

Results

Analysed 30 objects

- $T_{eff} 4000 6640 \text{ K}$
- Log g 0.5 4.65
- Metallicity -2.63 to 0.09
- Abundances of 22 elements
- Enhancement of C and heavy elements

IRAF, MOOG, IDL Kurucz model atmospheres LTE

Ref: Karinkuzhi and Goswami MNRAS (2014, 2015), Karinkuzhi and Goswami (2016a,b) – to be submitted

Origin of abundance patterns: Production mechanisms

Neutron-capture nucleosynthesis processes

a. slow neutron-capture - s-process

b. rapid neutron-capture - r-process

 Neutron fluxes and time scales → Astrophysical sites

- Production of s-process elements: Occur in low and intermediate mass AGB stars
- Neutron sources
 ¹²C (p, γ)¹³N (β)¹³C(α,n)¹⁶O

 $\begin{array}{ll} ^{22}\text{Ne}(\alpha,n)^{25}\text{Mg} & \text{for} \\ \text{mass} > 2.5 \ \text{M}_{\text{sun}} \end{array}$

 r-process : During supernova explosions

Classification based on abundance ratios (Beers and Christlieb 2005)

Parametric model based study

 $N_{i}(Z) = (A_{s} N_{is} + A_{r} N_{ir}) \ 10^{[Fe/H]}$

Z - metallicity of the star ;

 \mathbf{N}_{is} - abun by s-proces;

 N_{ir} - abun by r-process;

 A_{s} , A_{r} - the component coefficient that correspond to contributions from the s-process and r-process respectively Scale the solar system `s-' and `r-' process elemental abundances (Arlandini et al. 1999 stellar Model) to the metallicity of the corresponding star.

Normalize scaled abundances (`s-' and `r-' process) to the observed Barium (Ba) abundance

Fit the observed abundances of heavy neutroncapture elements using the parametric model functions

Look for the minimum chi-square

Results

Star name HD 16458 HD 48565 HD 92545 HD 104979 HD 107574 HD 125079 HD 204613 HD 216219

A 0.49 ± 0.09 0.84 ± 0.09 0.56 ± 0.33 0.51 ± 0.16 0.82 ± 0.01 0.83 ± 0.16 0.74±0.08 0.86 ± 0.14

A 0.60 ± 0.09 0.11 ± 0.08 0.50 ± 0.33 0.49 ± 0.15 0.17 ± 0.09 0.18 ± 0.15 0.29 ± 0.01 0.17 ± 0.13

 χ^2 1.6 1.15 2.150.5 1.22 0.51.65 1.22

Theory Vs Observation

Luminosity and Mass

- Luminosity
- Mass: Evolutionary tracks (Girardi et al. 2000) using spectroscopic temperature and log g
- low mass objects but luminosities are not comparable to AGBs

Binarity

Mass transfer from an AGB companion which underwent s-process nucleosynthesis during its lifetime and now evolved to a white dwarf.

CH binaries

• 7 objects - Confirmed binaries

- HD 5223 700 days
- HD 16458 2018 days
- HD 122202 1290 days
- HD 201626 1465 days
- HD 204613 890 days
- HD 209621 477 days HD 216219 - 3871 days

(McClure 1983, 1987,1990)

 7 objects, radial velocity variations have been noticed. But not yet confirmed – may be due to long period nature

Comparison

Understanding the AGB companion

1. Orbital separations: possible correlation/non correlation of elemental enhancement will help us to understand the possible mass transfer mechanisms

2. mass accretion efficiency

3.Internal mixing : Programme stars are in first ascent of the giant branch, no possibilities for internal nucleosynthesis of heavy elements.

4. Mass ratios of the binary members

s-process abundances versus period

Mass transfer mechanisms

Depends on the orbital separation and mass ratio

- Roche-lobe overflow (RLOF)
- Wind mass transfer (WMT)
- Wind Roche-lobe overflow (WRLOF)

(mohamed and Podsiadlowski 2007, mohamed 2010, Abate et al 2013, 2015)

RLOF:

 In the case of CH stars and Ba stars with AGB companion, it may lead to Common evolution rather than mass transfer.

WMT

WRLOF

- Wind velocity >> orbital Gravitational focussing of velocity of accreting star the wind of the primary
- Binary stars with long period have orbital velocity ~10 km/s but wind outflow is found with 5-30 km/s
- Gravitational focussing of the wind of the primary towards the orbital plane of the secondary.

Polarimetric study of CH and CEMP stars

To detect the presence of circumstellar dust from the polarization of light scattering by the dust Data : 2m telescope at IUCAA Girawali, Pune, India Methodology and Results (Goswami and Karinkuzhi, A&A 2013):

No significant polarization is detected

Summary and Ongoing works...

- Radial velocity monitorings of the objects
- Analysis of an extented sample of CH, CEMP and Ba stars
 - 1. High resolution optical spectroscopic analysis
 - 2. UV (proposals submitted to recently launched UVIT in the astrosat).
- Preliminary results based on the observational results indicate wind mass transfer is the possible reason for the enhancements. But a detailed theoretical model based study is required for the confirmation.

Thank you

Comparison with well known spectrum

