STORES EURopean Research Council Instance During European Research Council Instance During European Research Council

Constraining dust properties in C-stars in the SMC: optical constants and grain size of carbon dust

Part of the ERC project STARKEY (PI Paola Marigo)

Ambra Nanni

Department of Physics and Astronomy University of Padova (IT)

Università degli Studi di Padova

Goals

European Research Counc Established by the European Commission

erc

erc

STARKEY: to reproduce and interpret the observations of resolved stellar populations (CCDs, CMDs) → simulated with the TRILEGAL code (Girardi et al. 05)

➢ First step (this talk): to reproduce several colors simultaneously employing stellar tracks → constraints on carbon dust (Nanni et al. 16)

X-stars are mostly carbon rich (van Loon et al. 08b; Matsuura et al. 09)

Dust in C-stars: SiC, carbon, MgS

Method

Compute dust growth+ radiative transfer in CSEs along the TP-AGB tracks

Compare with the observations in the NIR & MIR colors for a large number of stars

Method

Compute dust growth+ radiative transfer in CSEs along the TP-AGB tracks

Compare with the observations in the NIR & MIR colors for a large number of stars

Novelty: dust constraint employing TP-AGB tracks + consistent dust formation model (Andersen et al. 99 employed dynamical models)

Model

- > on-the-fly computation of detailed molecular chemistry (800 species) and opacities
- 3° dredge-up and mass loss : parameterized description
- HBB: complete nuclear network (CNO, NeNa, MgAI cycles) coupled to a diffusive description of convection (MLT)
- > HBB nucleosynthesis and energetics fully accounted (no synthetic formalism)

INPUT of the DUST FORMATION MODEL

Established by the European Commission

ere

Nanni et al. 13, 14 (revised version of Ferrarotti & Gail 06 - FG06)

Input model ingredients (TP-AGB tracks - Bressan et al. 12, Marigo et al.13) - actual star mass - effective temperature (and spectrum) - stellar luminosity - mass-loss (prescriptions in TP-AGB models) - elements abundances in the atmosphere (including C/O)

erc

Output: circumstellar envelope (Nanni et al. 13-14)

- dust composition (we include several dust species)
- mass-loss in dust
- outflow velocity
- grain sizes
- fraction of elements locked in dust grains

9

- dust ejecta
- dust-to-gas ratios
 (Nanni et al.16)
 (+radiative transfer code)
 NIR and MIR colors

Dust mineralogy, abundances & spectra

European Research Council Established by the European Commission

erc

erc

Other assumptions

ere

European Research Council Established by the European Commission

Spherical grains

erc

- Number of initial particles (-> typical grain size) -> adjustable parameter, proportional to the carbon-excess
- > Typical grain size 0.04<a< 0.7 μm</p>

Input: data sets of optical constants

Designation	$\rho_{\rm d}$ [g/cm ³]	Reference
Jaeger400	1.435	Jager, Mutschke & Henning (1998)
Jaeger600	1.670	Jager, Mutschke & Henning (1998)
Jaeger800	1.843	Jager, Mutschke & Henning (1998)
Jaeger1000	1.988	Jager, Mutschke & Henning (1998)
Zubko1	1.87	Zubko et al. (1996)
Zubko2	1.87	Zubko et al. (1996)
Zubko3	1.87	Zubko et al. (1996)
Rouleau	1.85	Rouleau & Martin (1991)
Hanner	1.85	Hanner (1988)

Optical properties of carbon grains

Optical properties of carbon grains

Optical properties of carbon grains

Different optical data sets and grains sizes yield different colors → We need to constrain the carbon optical data set and grain sizes

Color-color diagrams

5

Nanni et al. 16

We should reproduce the observed colors

simultaneously

Calibration

erc

Established by the European Commiss

erc

Colors J-Ks, [3.6]-[8.0], J-[3.6], J-[8.0], Ks-[3.6], Ks-[8.0], [3.6]-[4.5], [5.8]-[8.0]

An observed star occupies a position in the space of parameters provided by the colors

> The range of J-Ks of the observed data was divided in 5 bins

$$\sigma_{c} = \sqrt{\frac{\sum_{\text{model}} \frac{\left(x_{\text{model}} - x_{av}\right)^{2}}{\sigma_{c,obs}^{2}}}{N_{\text{model}}}}$$
$$\sigma = \frac{\sum_{c} \sigma_{c}}{N_{c}}$$
$$<\sigma >$$

For each color "c"For each bin in J-Ks

Including all the colors

Average over all the bins

Results

erc

European Research Council Established by the European Commission

► Larger deviations for increasing grain sizes (a_{amC} ≥ 0.2 µm)

erc

>Observations are best reproduced by "small" spherical grains (0.04 -0.1 microns) a_{amC}~0.1 μm from hydrodynamical computations (Mattsson et al. 10)

Possible trend between a_{amC} and mass-loss rate and/or carbon excess

Nanni et al. 16

Future work

Established by the European Commission

erc

erc

> Extend the calibration to other spectral types (M-stars)

Extend the calibration to other galaxies (different metallicity)

Employ the calibrated models for complete simulations of stellar populations (TRILEGAL)