# Sowing the seeds of dust

What does it take to make a giant star dusty?

#### Iain McDonald Jodrell Bank Centre for Astrophysics University of Manchester

In collaboration with: Albert Zijlstra, Martha Boyer, Eric Lagadec, Greg Sloan, and many others...

La Silla

### Pulsation-enhanced radiatively-driven winds





#### Who cares?

#### What happens if metal-poor stars lose mass more slowly?

#### Who cares?



#### Who cares?

What happens if metal-poor stars lose mass more slowly? More nuclear fusion on the AGB Brighter AGB tip Core growth More dredge-up More dust made More near-IR flux Less mass lost WD bigger SNe rate Less ISM Greater C/O Higher dust:gas ratio  $\left[\alpha/\text{Fe}\right]$ [K, U, ... /Fe] Less star Carbon-rich formation ISM? Affects galaxy SED Radiogenic heating in Fewer Diamond planets planets? planets? [O/Fe] [Si/Fe] ISM cools Jeans mass More Planetary efficiently lower Metallicity planets? core measures masses Affects Bottompopulation Fewer giant Interstellar heavy IMF modelling planets extinction Cosmological curve foregrounds

#### Some expectations

5. Radiation driving less 1. Smaller stars  $\rightarrow$ 2. Pulsations weaker  $\rightarrow$ material leviated harder to levitate material effective  $\rightarrow$  slower outflow? further before Kjeldsen & Bedding (1995) 6. Different dust formation condensation pathways (different chemistry, conditions)? H<sub>2</sub>O met. Fei VO AI O Alumina CO Silicate TiO **Metal-rich SiO** ISM H<sub>2</sub>O Metal-poor VO AI O met. Fe? Alumina **TiO** Silicate Si<sub>0</sub> 4. Less dust but fewer 3. Fewer metals  $\rightarrow$ 7. Dust shielding less effective? dust seeds  $\rightarrow$  fewer fewer molecules (but Gas may be dissociated closer grains or smaller grains? alpha-element to the star. enhanced.) McDonald et al. (2012)



#### What is the mechanism promoting mass loss?



What is the mechanism promoting mass loss?

#### Radiation pressure on dust?



What is the mechanism promoting mass loss?



If radiation pressure dictates the mass-loss rate  $\rightarrow$  strong (~linear) dependence on [Fe/H] & luminosity

If pulsation dictates the mass-loss rate  $\rightarrow$  weak dependence on [Fe/H] & luminosity

Winds are momentum driven as starlight is scattered off large grains



Winds of M-type AGB stars driven by micron-sized grains

S. Höfner

Evidence for strong acceleration after a few stellar radii, consistent with dust formation







#### Lower-luminosity giant stars



#### Lower-luminosity giant stars



#### Lower-luminosity giant stars



#### Pulsation is linked to luminosity (P-L relationship) $\rightarrow$ two factors hard to disentangle

Pulsation is linked to luminosity (P–L relationship)  $\rightarrow$  two factors hard to disentangle

Long-period variables (LPVs) show weak relations between period and wind density (~ mass-loss rate)



Pulsation is linked to luminosity (P–L relationship)  $\rightarrow$  two factors hard to disentangle

But a clear relationship exists for shorter period variables, with a 60 (& 400-day) critical period



Pulsation is linked to luminosity (P–L relationship)  $\rightarrow$  two factors hard to disentangle

But a clear relationship exists for shorter period variables, with a 60 (& 400-day) critical period



Pulsation is linked to luminosity (P–L relationship)  $\rightarrow$  two factors hard to disentangle

P–L diagram shows that this is not a luminosity effect.

Linked to the pulsation mode? Dusty stars mostly fundamental + 1<sup>st</sup> overtone pulsators.



Higher-overtone RGB & massive stars tend to be dust free

McDonald & Zijlstra (2016)

Pulsation is linked to luminosity (P–L relationship)  $\rightarrow$  two factors hard to disentangle

P–L diagram shows that this is not a luminosity effect.

Linked to the pulsation mode? Dusty stars mostly fundamental +  $1^{st}$  overtone pulsators.



Higher-overtone RGB & massive stars tend to be dust free

#### Drivers of mass loss from stars at solar metallicity



### Expectations at [Fe/H] = -0.3 (LMC)



# Expectations at [Fe/H] = -0.3 (LMC)



### Expectations at [Fe/H] = -0.5 (SMC; Sgr dSph)



# Expectations at [Fe/H] = -0.7 (47 Tuc)



# Expectations at [Fe/H] = -1.3 (Sextans B)



### Expectations at [Fe/H] = -1.7 (omega Cen; dSphs)



# Expectations at [Fe/H] = -2.3 (M15)



# Expectations at [Fe/H] = -2.3 (M15)



#### Expectations: summary

- 1. Minimum in wind velocity of ~few 10 km/s at a few 1000  $L_0$ .
- 2. Winds of most stars adequately described by Reimers' (1975) law or similar.
- 3. Little change in MLR or  $v_{exp}$  with metallicity until radiation pressure becomes important.

Following this:

- 4. C & O star winds have similar MLRs and v<sub>exp</sub> at solar metallicity (same radiation pressure on dust).
- 5. C & O star MLRs and  $v_{exp}$ 's will separate for luminous metal-poor stars.
- 6. O-rich MLRs and  $v_{exp}$  will decline at low metallicity as radiation pressure becomes ineffective.
- 7. C-rich winds will still be radiation driven.

#### Causing:

- 8. Gradual extension of lifetimes / peak luminosities for OH-IR stars at low metallicity.
- 9. Gradual vertical separation of C stars and OH-IR stars in infrared CMDs.

#### Tests:

Use CO lines to determine MLR & v<sub>exp</sub> for a variety of stars at different *M* and [Fe/H].
Search for unexpected gaps in metal-poor luminosity functions just above upper C star limit.

#### **Requires:**

- 12. A large observational sample of stars with well-characterised *M* and [Fe/H].
- 13. Correct prediction of periods (including growth rates!) from stellar evolution models.

# THE END?

### Encore

#### Futures: nearby stars

APEX observations this semester to observe CO(2-1) around 11 nearby stars in transitional regime



SPHERE programme to look at the effects of binarity and asymmetry in outflows







Data: Solid: Marigo et al. (2008); figure: McDonald et al. (2012)





Data: Marigo & Girardi (1997); figure: McDonald et al. (2012)

### DUSTINGS & "DUSTING+"

Multi-wavelength photometric & spectroscopic survey of nearby dwarf (irregular) galaxies Mid-infrared: *Spitzer* [3.6] & [4.5] multi-epoch variability survey for LPVs [OBSERVED] Near-infarred: *HST* medium-band survey to separate C and M stars. [OBSERVED] Optical: southern hemisphere: VLT V & I survey → homogeneous photometry [SCHEDULED] Optical: northern hemisphere: INT multi-epoch survey → photometry, variability [SCHEDULED] Near-infrared: J & Ks survey → homogeneous photometry [PLANNED] Mid-infrared: *JWST* photometric survey [PLANNED] Near-infrared spectra: temperature and metallicity estimation from J-band [PLANNED] Mid-infrared LR spectra: dust composition and mass-loss rates [PLANNED] Mid-infrared HR spectra: outflow velocities from circumstellar lines [PLANNED]

### Nearby stars programme

*Gaia*: Fundamental parameters from multi-wavelength archival data  $\rightarrow$  infrared excess [in prep] Sub-mm: More expansion velocities from APEX [SCHEDULED] Sub-mm: Circumstellar envelope imaging with ALMA [CYCLE 4] Optical: High-resolution imagery with SPHERE to detect inhomogeneities & binarity [ONGOING]

# THE END.

(really)