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What does it take to make a giant star dusty?
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Which stars are dusty?

Luminous metal-poor AGB star

Faint metal-poor AGB star

Luminous metal-rich AGB star

Faint metal-rich AGB star

DUSTY

DUSTY



  

Who cares?
What happens if metal-poor stars lose mass more slowly?
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1. Smaller stars    →
material leviated 
further before 
condensation

2. Pulsations weaker  →
harder to levitate material

Kjeldsen & Bedding (1995)

3. Fewer metals  →
fewer molecules (but 

alpha-element 
enhanced.)

4. Less dust but fewer 
dust seeds  fewer →

grains or smaller grains?

5. Radiation driving less 
effective  slower outflow?→

6. Different dust formation 
pathways  (different 

chemistry, conditions)?

7. Dust shielding less effective? 
Gas may be dissociated closer 

to the star.
McDonald et al. (2012)
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Which stars are dusty?
What is the mechanism promoting mass loss?
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Which stars are dusty?

Luminous metal-poor AGB star

Faint metal-poor AGB star

Luminous metal-rich AGB star

Faint metal-rich AGB star

DUSTY

Dusty

Dusty

Less 
dust

What is the mechanism promoting mass loss?

Radiation pressure on dust? Stellar pulsation?

If radiation pressure dictates the mass-loss rate  strong (~linear) dependence on [Fe/H] & luminosity→
If pulsation dictates the mass-loss rate  weak dependence on [Fe/H] & luminosity→

Stronger 
pulsations



  

Local observations support radiation pressure

Norris et al. (2012), Hoefner et al. (2008)

Winds are momentum driven as starlight is scattered off large grains



  

Local observations support radiation pressure

Decin et al. (2010)

Evidence for strong acceleration after a few stellar radii, consistent with dust formation



  

Local observations support radiation pressure

Danilovich et al. (2015)

Increasing luminosity →
increasing mass-loss rate and outflow velocity
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Lower-luminosity giant stars
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Lower-luminosity giant stars
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Lower-luminosity giant stars
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What about pulsation?
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What about pulsation?
Pulsation is linked to luminosity (P—L relationship)  two factors hard to disentangle→

Long-period variables (LPVs) show weak relations between period and wind density (~ mass-loss rate)

Uttenthaler  (2013)
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But a clear relationship exists for shorter period variables, with a 60 (& 400-day) critical period
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M
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What about pulsation?
Pulsation is linked to luminosity (P—L relationship)  two factors hard to disentangle→

McDonald & Zijlstra (2016)

P—L diagram shows that this is not a luminosity effect.

Linked to the pulsation mode? Dusty stars mostly fundamental + 1st overtone pulsators.

Higher-overtone RGB & massive stars tend to be dust free



  

What about pulsation?
Pulsation is linked to luminosity (P—L relationship)  two factors hard to disentangle→

P—L diagram shows that this is not a luminosity effect.

Linked to the pulsation mode? Dusty stars mostly fundamental + 1st overtone pulsators.

Higher-overtone RGB & massive stars tend to be dust free

Boyer et al. (2015)
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Drivers of mass loss from stars at solar metallicity
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Superwind



  

Expectations at [Fe/H] = -0.3 (LMC)
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Expectations at [Fe/H] = -0.5 (SMC; Sgr dSph)
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Expectations at [Fe/H] = -0.7 (47 Tuc)
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Expectations at [Fe/H] = -1.3 (Sextans B)
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Expectations at [Fe/H] = -1.7 (omega Cen; dSphs)
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Expectations at [Fe/H] = -2.3 (M15)
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Expectations at [Fe/H] = -2.3 (M15)
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Expectations: summary
1. Minimum in wind velocity of ~few – 10 km/s at a few 1000 LO.
2. Winds of most stars adequately described by Reimers' (1975) law or similar.
3. Little change in MLR or vexp with metallicity until radiation pressure becomes important.

Following this:
4. C & O star winds have similar MLRs and vexp at solar metallicity (same radiation pressure on dust).
5. C & O star MLRs and vexp's will separate for luminous metal-poor stars.
6. O-rich MLRs and vexp will decline at low metallicity as radiation pressure becomes ineffective.
7. C-rich winds will still be radiation driven.

Causing:
8. Gradual extension of lifetimes / peak luminosities for OH-IR stars at low metallicity.
9. Gradual vertical separation of C stars and OH-IR stars in infrared CMDs.

Tests:
10. Use CO lines to determine MLR & vexp for a variety of stars at different M and [Fe/H].
11. Search for unexpected gaps in metal-poor luminosity functions just above upper C star limit.

Requires:
12. A large observational sample of stars with well-characterised M and [Fe/H].
13. Correct prediction of periods (including growth rates!) from stellar evolution models.



  

THE END?
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Futures: nearby stars
APEX observations this semester to observe CO(2-1) around 11 nearby stars in transitional regime

SPHERE programme to look at the effects of binarity and asymmetry in outflows



  

Futures: JWST studies of nearby populations

Dying stars 
throughout 
cosmic time

Milky Way
open clusters

Milky Way 
globular clusters

Magellanic 
Cloud 

clusters



  

Futures: JWST studies of nearby populations

Data: Solid: Marigo et al. (2008); figure: McDonald et al. (2012)

Milky Way
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SMC

Carbon stars 
produced

No carbon stars

More oxygen  →
more carbon needs 
dredged up  →
fewer carbon stars



  

Futures: JWST studies of nearby populations

Milky Way
LMC

SMC

Carbon stars 
produced

No carbon stars

Solid: Marigo et al. (2008)
Black: Karakas+2010,2014; Lugaro+2012; Fishlock+2014

Ventura et al. (priv. comm.)



  

Futures: JWST studies of nearby populations

Data: Marigo & Girardi (1997); figure: McDonald et al. (2012)
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DUSTiNGS & “DUSTING+”
Multi-wavelength photometric & spectroscopic survey of nearby dwarf (irregular) galaxies

Mid-infrared: Spitzer [3.6] & [4.5] multi-epoch variability survey for LPVs [OBSERVED]
Near-infarred: HST medium-band survey to separate C and M stars. [OBSERVED]
Optical: southern hemisphere: VLT V & I survey  homogeneous photometry→  [SCHEDULED]
Optical: northern hemisphere: INT multi-epoch survey  photometry, variability→  [SCHEDULED]
Near-infrared: J & Ks survey  homogeneous photometry→  [PLANNED]
Mid-infrared: JWST photometric survey [PLANNED]
Near-infrared spectra: temperature and metallicity estimation from J-band [PLANNED]
Mid-infrared LR spectra: dust composition and mass-loss rates [PLANNED]
Mid-infrared HR spectra: outflow velocities from circumstellar lines [PLANNED]

Nearby stars programme
Gaia: Fundamental parameters from multi-wavelength archival data  infrared excess→  [in prep]
Sub-mm: More expansion velocities from APEX [SCHEDULED]
Sub-mm: Circumstellar envelope imaging with ALMA [CYCLE 4]
Optical: High-resolution imagery with SPHERE to detect inhomogeneities & binarity [ONGOING]



  

THE END         (really)
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