Dust formation in AGB stars

David Gobrecht Sergio Cristallo Luciano Piersanti Stefan T. Bromley Isabelle Cherchneff & Arkaprabha Sarangi

Evidence for dust

 In presolar meteoritic grains with particular isotopic signatures

- Spectroscopic features
- Depletion of atoms and molecules (indirect)

Stellar sources of dust

Types of dust

- C-rich dust: (hydrogenated) amorphous carbon, graphite, SiC
- O-rich dust: silicates (olivine, pyroxene), metal oxides (Al₂O₃, TiO₍₂₎, SiO₍₂₎, FeO)
- Pure Metals: Fe, Mg, Al

Amari+ 1994

Conditions for dust formation

- Low temperatures (< 2000 K) to afford condensation
- Sufficient high densities (~10¹⁰ 10¹⁶ cm⁻³)to allow for coalescence
- Availability of atoms, molecules & clusters for the specific condensate
- Sufficient time for dust clusters and grains to grow (time scales)

 \rightarrow such conditions prevail in the inner envelopes of AGB stars

Pulsational shocks

Periodic pulsations compress, heat and accelerate the ambient medium

 \rightarrow dense molecular layers form in the cooling post-shock gas

 \rightarrow favourable conditions for dust formation

Circumstellar envelope

Gobrecht et al.: Dust formation in IK Tau

IK Tau: circumstellar model

 Periodic pulsation model of the extended atmosphere of an O-rich AGB + chemicalkinetic network with 100 species and 440 processes including dust cluster formation

Star					
M _{*ZAMS}	1.5 M _☉	1			
R.	2.5 ×10 ¹³ cm	2			
C/O	0.75	3			
Р	470 days	4			
T_{eff}	2200 K	2			
Wind					
r _s	1 R*	3			
Vs	32 km s ⁻¹	3			
Ń	$8 \times 10^{-6} M_{\odot} { m yr}^{-1}$	2			
Vesc	17.7 km s ⁻¹	2			
γ	0.98				
α	-0.6	3			
$n_{gas}(r_s)$	3.62 ×10 ¹⁴ cm ⁻³	3			
$T_{gas}(r_s)$	2200 K	-			

Bertschinger&Chevalier 1985 Cherchneff 1992,2006,2012 Duari 1999, Gobrecht 2016

Radiu	S			
\square	\backslash	\mathbf{r}	\mathbb{k}	\sum
17	(/		Ti	me / Phase

Reaction type	Reaction	formulation	Gas conditions
Unimolecular			
Thermal decomposition	AB	$\rightarrow A + B$	High T
Bimolecular			
Neutral-exchange	AB + C	\rightarrow A + CB	T dependent
Collisional dissociation	AB + M	\rightarrow A + B + M	High T
Radiative association	A + B	\rightarrow AB + γ	T independent
Termolecular			
Termolecular formation	A + B + M	$\rightarrow AB + M$	(Very) high n

IK Tau: results on molecules

- Non-equilibrium: Carbon-bearing species like HCN, CS or CO₂ form in the inner envelope
- Modelled abundances at 6-8 R_{*} agree well with observations

IK Tau: results on clusters and dust

- Clusters of alumina (Al₂O₃) form and condense close to the star in the cooling post-shock gas
- Forsterite grains (Mg₂SiO₄) form at larger radii (4R_{*}) in greater amounts, but lower size

Conclusions (part I)

- Molecular abundances including non-equilibrium species HCN, CS and CO₂ well reproduced, expect NH₃, PO and (SO₂)
- Large grains of alumina dust form close to the star that is too low to exclusively explain the observed mass loss rate / dust-to-gas ratio
- Forsterite grains form around 4 R_{*} in amounts comparable to observations, although their mean size rather low

Dust Clusters

- Link between molecules and dust grains:
 e.g. Al₄O₆, Mg₄Si₂O₈, Si₁₆C₁₆
- Many body-problem: $H\psi(r) = E\psi(r)$
 - \rightarrow no exact solution

→ parallelized supercomputers required to perform full quantum calculations

 \rightarrow structures, energetics, reactivity are not well characterized

Silicon carbide (SiC) clusters

Crystalline bulk versus

4.4 Å

clusters

Clusters: Quantum effects, surface-to-volume ratio, unsaturated bonds Candidate structure search by Molecular dynamic & Monte-Carlo simulations

 \rightarrow subsequent refinement on the quantum DFT level of theory

SiC: Molecular dynamics

• Tersoff potential:

Tersoff 1989 $V_{ij} = f_C(r_{ij}) \left[V_{rep}(r_{ij}) + b_{ij}(\theta_{ijk}) V_{att}(r_{ij}) \right]$

- \rightarrow accounts for covalent character of clusters
- \rightarrow segregation of Si and C atoms, C5 and C6 ring formation
- Simulated annealing: High-temperature (2000-3000 K) molecular dynamics and subsequent decrease of temperature with the program GULP (General Utility Lattice Program)

Monte-Carlo candidate structures

• Buckingham pair potential:

$$\Phi_{12}(r) = A \exp(-Br) - rac{C}{r^6} + rac{q_1q_2}{4\piarepsilon_0 r}$$
 , Buckingham 1938

- \rightarrow account for ionic character of clusters
- → alternating Si-C bondings
- ZnS (zinkblende) analogy, charge transfers between C and Si ions as large as 2.5 e Watkins 2009

Bromley 2005

 Monte-Carlo exploration of the potential landscape with the Basin-Hopping algoritm

stributed under the terms of the GNU public license (GPL). sit http://www.gnu.org

SiC clusters: preliminary results

 Most stable SinCn structures exhibit segregation of C atoms forming chains, C₅ and C6 rings and cage-like configurations with increasing size

SiC clusters: preliminary results II

 DFT calculations → Potential energy, HOMO-LUMO gap, Vibrational IR spectra, theoretical reaction rate determination

Conclusions (part II)

- We found new, stable (SiC)_n with $n \le 16$ clusters with the lowest potential energies
- Segregated clusters with C5 /C6 rings dominate the SiC cluster chemistry for $n \leq 16$
- However, for n=12 and n=16 very stable clusters with alternating Si-C bonds and bulk-like properties are found
- These clusters indicate the sizes / length scales, where the transition of quantum-effect dominated clusters and bulk-SiC (found in meteoritic inclusions) may occur

Still to be finalized ...

- Comparison with observations (e.g. 11.3 μm feature)
- Theoretical rate (temperature & density dependent)
- Formation routes via Si_nC_m, m≠n (SiC₂ and Si₂C observed)

THANK YOU FOR YOUR ATTENTION!