

Stellar Archeology using Wind Properties

Eva Villaver Universidad Autonoma de Madrid

Hubble Legacy Archive, NASA, ESA

The Ingredients:

- To understand the mass-loss return from low and intermediate mass stars we need to evolve the star.
- AGB PN (single) stars progenitors range from 1 up to $8 M_{\odot}$
- Stellar dynamics, where to find the mass-loss? Systemic velocities in the Galaxy: 0-150 km/s
- Collimation mechanisms

THE STAR

Mass-loss is the signature of the TP-AGB evolution. At uncertain rates it removes up to 7 M_{sun} of material on timescales of 10⁵-10⁶ yr (Vassiliadis & Wood 1993, Blocker 1995, Herwig 2005, Schroder et al. 1999).

Maximum 10⁻³ to $3 \times 10^{-5} M_{sun}/yr$

shock waves+winds radiation transfer dust+molecules formation

Initial-to final mass fixed, then higher mass-loss rates imply shorter evolutionary timescales.

AGB Wind

Villaver et al. (2002a)

Villaver et al. (2002)

ENVIRONMENT

THE ISM CONDITIONS

Low Velocíty Interaction: V = 10 km/s

n = 0.1 cm⁻³

9

 $n = 1 \text{ cm}^{-3}$

Villaver et al. (2012)

High Velocity Interaction $V = 100 \text{ km s}^{-1}$

 $n = 0.01 \text{ cm}^{-3}$

Villaver et al. (2012)

The star: collimation mechanism

STELLAR ROTATION

Need a companion!

Summary

- Shells up to 2.5 pc around AGB stars
- Most observations can only recover the brightest last episode of mass-loss
- ISM interaction + cometary tails result of the interaction with the ISM at small velocities
- Ram pressure striping reduces the mass of the envelopes. We cannot see the contribution of AGB stars to the ISM
- Single stars cannot make highly collimated PNe objets

Copyright ID 2005 Pearson Prendice Hall, Inc.