

Variability and dusty winds of AGB stars

Sofie Liljegren

AGB stars

- Cool giants (T ~ 2500 3500K)
- Pulsates (100 1000 days)
- · Luminous (L ~ 5000 10000 L_{\odot})
- Significant mass loss (dm/dt ~ $10^{-8} 10^{-4} M_{\odot} \text{ yr}^{-1}$)
- Slow wind (v ~ 10 30 km s⁻¹)

Structure - atmosphere

•

- Connection between variability stellar atmosphere mass loss
- Is it possible to observe different pulsation properties?

(Liljegren et al., 2016, A&A, 589, 10)

•

•

DARWIN

- 1D dynamical atmosphere and wind models
- Hydrodynamics eq. + frequency dependent radiative transfer
- Time-dependent description of dust grains
- Inner boundary: L_{in} , $R_{in} \propto sin(t)$

Atmosphere structure

Dust

Atmosphere structure

Dust

Lum minimum

-> low temp -> dust = wind driving

Atmosphere structure

Dust

Lum minimum

-> low temp
-> dust = wind driving

Lum maximum

-> radiative pressure on dust

New boundary conditions

Positive phase shift

Original

Positive phase shift

-> Larger mass loss rate + higher wind velocity

Negative phase shift

Original

Negative phase shift

-> Lower mass loss rate

UNIVERSITET

Wind properties vs $\Delta \phi$

Possible to observe?

<u>Light curves</u>

-> variation in luminosity.

<u>Molecular line profiles</u> -> information about the shockwaves

-> information about the radial variation

Alvarez et al., 2000

CO dv=3 line

- Line synthesis using COMA.
- CO vibration-rotation line (CO dv=3 5-2 P30 at 1.66 micron)
- Same features for different phase shift (e.g line doubling), at different bolometric phase

Conclusions

- DARWIN models are sensitive to inner boundary condition
- Timing of both luminosity max and min matters
- Significant effects (± ~ 40%)
- Might be observable, by comparing high res spectra and light curves
- Use as a diagnostic tool for pulsation models(?)

- Do same tests for m-stars
- Extract boundary conditions from the 3D models -> DARWIN

1D models

3d models

Model:	W	Μ
$L_{\star} [L_{\odot}]$	7000	7000
$M_{\star} [M_{\odot}]$	1.0	1.5
T_{\star} [K]	2800	2600
$R_{\star} [R_{\odot}]$	355	412
[Fe/H]	0	0
C/O [by number]	1.4	1.4
Period [days]	390	490
$\Delta u_{\rm p} [\rm km s^{-1}]$	2	6
f_L	1.0	1.5

Result

Result

Result

UNIVERSITET

Evolution

Herwig, 2005

UNIVERSITET

Light curves

AGB stars as pulsators

Many classes of variable stars are on the instability strip -> kappa mechanism

 Driving of AGB stars poorly understood

Structure - interior

Pulsation driving takes place in convective envelope

 $\tau_{conv} \sim P$

•

Driving of AGB stars poorly understood

Modes of pulsation

Fundamental 1st overtone 2nd overtone

Period-Luminosity

C -> Miras

A, B -> SRVs, IRVs

E -> binaries with common envelope

D -> ??

AGB stars from the LMC, plotted in the P-L plane (Wood, 2000)

•

- Galactic chemistry chemical yield of e.g. s-elements and dust yields depend on mass loss of AGB stars.
 - Initial-final mass relation depends on the mass loss during the AGB phase.

- Understand AGB star variability
- · Connection between variability stellar atmosphere mass loss

Modelling

CO⁵BOLD

- 3D star-in-a-box simulations
- Models convective envelope and lower atmosphere
- Compressible hydrodynamics eq. + grey radiative transfer

-> Paper II

A&A 589, A130 (2016) DOI: 10.1051/0004-6361/201527885 © ESO 2016

Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations

S. Liljegren¹, S. Höfner¹, W. Nowotny², and K. Eriksson¹

 ¹ Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden e-mail: sofie.liljegren@physics.uu.se
 ² University of Vienna, Department of Astrophysics, Türkenschanzstrasse 17, 1180 Wien, Austria

Received 3 December 2015 / Accepted 8 March 2016

- Assess the effects on atmospheric structure, wind velocity and mass loss rate when using more realistic boundary conditions
- Investigate the implications for observables.

Paper II

Astronomy & Astrophysics manuscript no. aaagb3dfirstgrid May 11, 2016 ©ESO 2016

Global 3D radiation-hydrodynamics models of AGB stars

Effects of convection and radial pulsations on atmospheric structures

B. Freytag, S. Liljegren, and S. Höfner

Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden (e-mail: Bernd.Freytag@physics.uu.se)

Started 2015-05-29; Received ...; accepted ...

- Grid of 3D models
- Investigate updated numerics, small scale structures and the influence of different stellar parameters

UNIVERSITET

•

Setup and grid

- CO⁵BOLD code used
- 3 groups of models

UNIVERSITET

Movie

UPPSALA <u>UNIVER</u>SITET

Radial velocity field

UNIVERSITET

Fourier analysis

Comparison to other work

Observations

Conclusions

- Self-excited radial pulsations
- Pulsates in the fundamental mode
- Produces realistic P-L relationship, consistent with observations
- Larger radius than 1D models

Classification - spectra

- <u>M stars</u> -> C/O < 1, oxygen dominated chemistry (H₂O, SiO, TiO...), dust created are silicates and different oxides.
- <u>S stars</u> -> C/O ~ 1, ZrO bands visible.
- <u>C stars</u> -> C/O > 1, carbon dominated chemistry (C₂, CN, HCN, C₂H₂). Amorphous carbon dust.

Method comp

