Tau-neutrino production study at CERN SPS: Novel approach by the DsTau experiment

> O. Sato (Nagoya University) for the DsTau collaboration
> 26/Aug/2016 NuFact2016, ICISE, Quy Nhon

Current status on neutrino CC cross section measurements

v_{μ} : measured by many experiments

Average over 30 - 200 GeV $\sigma_{\nu\mu}^{const} = (0.51 \pm 0.01) \times 10^{-38} cm^2 GeV^{-1}$

~2% error

v_{τ} : only the DONuT experiment Beam source : Ds $\rightarrow \tau + v\tau$ $\tau \rightarrow x + v\tau$ $\sigma_{v\tau}^{const} = 7.5(0.335 n^{1.52}) \times 10^{-40} cm^2 GeV^{-1}$

Measured as a function of a parameter n describing $d\sigma(D_s)/dx_F \sim (1-|x_F|)^n$

No experimental data giving n for Ds -> 50% systematic uncertainty

2

The DONuT experiment (Fermilab E872)

- Designed to observe ν_τ CC interactions by identifying τ

Results from DONuT (1)

 v_{τ} CC cross section

$$\boldsymbol{\sigma}_{v\tau}(E) = \boldsymbol{\sigma}_{v\tau}^{const} \times \boldsymbol{E}_{v\tau} \times \boldsymbol{K}_{\tau}(E)$$

 ν_τ CC cross section was calculated as a function of one parameter. The energy-independent part was parameterized as

$$\sigma_{v\tau}^{const} = 7.5(0.335\,n^{1.52}) \times 10^{-40} cm^2 GeV^{-1}$$

where **n** is the parameter controlling the longitudinal part of the D_s differential cross section

 x_F is Feynman x ($x_F = 2p^{CM}/Vs$) and p_T is transverse momentum

Results from DONuT (2)

 v_τ CC cross section as a function of the parameter n

$$\sigma_{v\tau}^{const} = 7.5(0.335\,n^{1.52}) \times 10^{-40} \,cm^2 GeV^{-1}$$

No published data giving n for D_s produced by 800 GeV proton interactions

Systematic uncertainties		
D _s differential cross section (x _F dependence)	~(0.5!?
Charm production cross section		0.17
Decay branching ratio		0.23
Target atomic mass effects (A dependence)		0.14

The main uncertainty is .. How (hard/soft) Ds(ντ source) are produced !

Motivation of DsTau project

 \mathbf{v}_{μ} : measured by many experiments Average over 30 - 200 GeV $\boldsymbol{\sigma}_{\nu\mu}^{const} = (0.51 \pm 0.01) \times 10^{-38} cm^2 GeV^{-1}$ ~2% error

v_{τ} : only the DONuT experiment

Beam source : Ds $\rightarrow \tau + v\tau$ $\tau \rightarrow x + v\tau$ $\sigma_{v\tau}^{const} = 7.5(0.335 n^{1.52}) \times 10^{-40} cm^2 GeV^{-1}$

Measured as a function of a parameter n describing $d\sigma(D_s)/dx_F \sim (1-|x_F|)^n$

No experimental data giving n for Ds - >50% systematic uncertainty

New experiment, DsTau for precise ν_τ cross section measurement

 $v\tau$ beam source Ds production feature should be measured in accurate.

- Essential input for test v_{μ} v_{τ} universality in CC interactions
- Useful results for experiments which are aiming to detect ν_{τ}
- Possibly rich by-products

7

New experiment to re-evaluate the cross section

- $D_s \rightarrow \tau \rightarrow X$ precision measurement in high energy proton interactions

→ Re-evaluation of v_{τ} cross section & useful results for future v_{τ} experiments

Observable of the experiment

• D_s production x decay branching ratio

$$\frac{N_{v_{\tau}}^{beam}}{N_{pot}} = \frac{2 \times \sigma(pW \to D_s X) \times BR(D_s \to v_{\tau}\tau)}{\sigma(pW)}$$

With collecting **1000** detected $Ds \rightarrow \tau$

- Angular distribution of $D_s \rightarrow \tau$ events
- \rightarrow Energy distribution $\rightarrow x_F$ dependence

LOI submitted to the CERN SPSC (CERN-SPSC-2016-013; SPSC-I-245)

$Ds^{\pm} x_{F}$ distributions

generated from pythia8185 for Ds[±] production in proton-nucleon interactions

 p_{T} distributions for Ds[±]

MC with 800 GeV beam

MC with 400 GeV beam

Target systematic uncertainty for $v\tau$ cross section measurement

No published data giving n for D_s produced by 800 GeV proton interactions

Systematic uncertainties	DONUT	With DsTau
D _s differential cross section (x _F dependence)	~0.5!?	0.1
Charm production cross section	0.17]
Decay branching ratio	0.23	0.03
Target atomic mass effects (A dependence)	0.14	

DsTau Project will provide Ds production information with detecting 1000 Ds $\rightarrow \tau \rightarrow X$!

Emulsion detectors: highest position resolution

AgBr crystal 10¹⁴ crystals in a film

Emulsion detectors: intrinsic resolution

Emulsion detector produced in Bern using high sensitivity emulsion gel produced in Nagoya University

Intrinsic resolution 58 nm \rightarrow Angular resolution 0.05 μ m· $\sqrt{2}/200\mu$ m = 0.35 mrad

Signal and background

 Signal = a double kink + a charmed particle decay Background = hadron interactions

Module structure for $D_s \rightarrow \tau \rightarrow X$ measurement

Key technique for Xf measurement : Ds momentum reconstruction from topological variables

- x_F is a longitudinal profile of Ds: $x_F = 2p_z^{CM}/\sqrt{s} = 2\gamma(p_{Ds}^{Lab}cos\theta_{Ds}-\beta E_{Ds}^{Lab})/\sqrt{s}$
- Ds decays quickly, unable to measure P directly
- Need a method to estimate P_{Ds} from topological variables

Topological variables: correlation with P_{Ds}

Sample: tau single prong decay

Ds momentum reconstruction by Artificial Neural Network (ANN) using 4 variables

How many interactions to be analyzed?

• To detect 1000 $D_s \rightarrow \tau \rightarrow X$ events

- Efficiency ~22%, BR($D_s \rightarrow \tau$) = 5.55%
- $-8.2 \times 10^4 D_s$ to be produced

• D_s production cross section in Tungsten target

- ~8.5x10⁻⁴ @800GeV \rightarrow ~4x10⁻⁴ @400GeV

• \rightarrow 2x10⁸ proton interactions to be analyzed!

 \leftrightarrow only 10^5 proton interactions were analyzed in emulsions in E653 (previous exp.)

Module structure for $D_s \rightarrow \tau \rightarrow X$ measurement (current baseline)

- In case of 5 units \rightarrow 0.025 λ_{int} in tungsten \rightarrow 8x10⁹ pot needed to get 2x10⁸ proton int.
- Track density in emulsion: keep <10⁵ tracks/cm² at the upstream side
- To expose 8x10⁹ pot → detector surface 8x10⁴ cm² (800 modules)

The expected setup of the experiment

Needed beam time

• Assuming 10^5 protons/spill and the beam spot 1 cm², detector surface 8 x 10^4 (cm²) x 30 (sec/cm²) = ~4 weeks.

• Module exchange time: 10 min x 800 modules = ~ 1 week.

Readout of emulsion data

← New scanning system being developed in Nagoya, aiming at the speed of 9000 cm²/h (22 m²/day)

Another system dedicated to high precision measurements based on GPU technology in Bern, aiming at the speed of 100 cm²/h

	New experiment
Emulsion surface	~400 m² (x2sides)
Readout time	Standard scan ~4 Months to 1 Year
	High precision scan ~3 months

Prototype test experiment in 2016

• 400 GeV Proton beam test in Nov. 2016

- 5 days of beam time at the H4 beam line
- 20 m² emulsion surface (1:40 of the final setup)

• Aim

- Test of tuning the beam size
- Optimization of the setup
- Proof of principle experiment,
 Xf evaluation by about25 detected Ds->τ events

- Track density study
 - 10⁴ / cm2 x a few bricks
 - 10⁵ / cm2 x 10-20 bricks
 - 10⁶ / cm2 x a few bricks
- Longitudinal thickness
 - 5, 10, 20 units (50, 100, 200 films)

Preparation in progress

- Emulsion film production in Bern using the gel from Japan
- XY stage and control
- Beam profile monitor with silicon pixel sensors

Establishing the film production facility equipped with 9 gel pouring tables

Summary and prospects

- $\nu\tau$ CC cross section measurement could be a check of lepton flavor universality.
- While $\nu\tau$ cross section measurement have been reported by only DONUT.
- The error on DONUT result suffer large systematic error (50%), not only statistical (9ev detected $v\tau$) error (30%).
- The main systematic error is how Ds were produced at beam source.

DsTau project aim

- $D_s \rightarrow \tau \rightarrow X$ precision measurement in high energy proton interactions is essential input toward precise evaluation of v_{τ} cross section.
- 2x10⁸ proton interactions are to be obtained and analyzed 1000 $D_s \rightarrow \tau \rightarrow X$ events .
- Prototype test experiment in Nov. 2016
- Aiming to realize the experiment hopefully in **2018** before the SPS shutdown

The collaboration

- Japan: Aichi Kobe Nagoya
- Romania: Bucharest
- Russia: Dubna

Switzerland: Bern

Turkey: Ankara

Backup

Difference due to pythia versions?

Including an angular resolution

- 0.35 mrad in each projection
- \rightarrow 0.7 mrad for kink angle

Momentum measurement through multiple Coulomb scattering

P_{rec} (GeV) A(1/p)/1/p (%) p = 1 GeV/c MC data 8 p = 2 GeV/creal data p = 3 GeV/c60 p=4 GeV/c Y=x p = 6 GeV/c50 p = 8 GeV/c30 3 20 1 10 10 20 30 40 50 60 8 P_{beam} (GeV) track span (N_)

Muon momenta measured by MCS in OPERA

 π test beam

New Journal of Physics 14 (2012) 013026 Production Particle slope With 400 GeV proton beam

