

Tsutomu Fukuda (Nagoya Univ. Japan) on behalf of J-PARC T60 collaboration

tfukuda@flab.phys.nagoya-u.ac.jp

NuFact2016, 26th Aug. 2016 @ ICEI, Quy Nhon, Betonum

hadron

electron

Motivation

- Precise neutrino-nucleus interaction measurement is important to reduce the systematic uncertainty in future neutrino oscillation experiments.
- We start a new experiment at J-PARC to study low energy neutrino interactions by introducing nuclear emulsion technique.
- The emulsion technique can measure all the final state particles with low energy threshold for a variety of targets (H₂O, Fe, C,...).
- Furthermore its ultimate position resolution allow to measure
 v_e cross section with good electron/gamma separation capability.

Nuclear Emulsion Detector

3D reconstruction

4π detection

Ultra precise measurement γ / electron ID Microscopic image from the view of the beam axis electron γ−>e+e-1um

Low BG from v_{μ} NC π^{0} production

Scalability

Momentum, dE/dx measurement

Nuclear Emulsion Detector

Contribution for fundamental physics

- **1896** (A. H. Becquerel) **Discovery of Radioactivity**
- **1947** (C. F. Powell et al.) **Discovery of \pi meson**

1971 (K. Niu et al.) Discovery of charm particle in cosmic-ray

2001 (K. Niwa et al.) **Direct observation of** v_{τ}

2015 (OPERA) **Discovery of** v_{τ} **appearance**

Recent technical improvements

Readout technique

High Speed Scanning

HTS 9,000cm²/h, x100 faster

Large angle tracking technique

Detector technique

High Sensitive film

Time resolution

<u>Charge sign ID</u>

J-PARC T60 Experiment

Proposal of an emulsion-based test experiment at J-PARC Exclusive summary

A test experiment is proposed that equips Emulsion Cloud Chamber as a main detector in order to investigate environmental and beam associated background at the T2K near detector hall in J-PARC, optimal detector structure, and performance of newly developed nuclear emulsion gel. The aim of the experiment is a feasibility study to make a future experimental plan for the study of low energy neutrino-nucleus interactions and the exploration of a sterile neutrino.

J-PARC PAC endorsed as a test experiment. (PI: T. Fukuda)

A collaborative project with some member of OPERA and T2K

- The aim of T60 is a feasibility study and detector performance check to make a future plan.
- We will expand the scale of detector gradually, step by step.

v exposure status of T60

exposure	Detector	Aim
2014. Nov – 2015. Mar	2kg Iron target ECC with Emulsion Shifter	 Emulsion film production Emulsion handling @J-PARC Demonstration of v event detection and analysis Hybrid analysis with INGRID
2015. May - Jun	1.5kg Water target ECC	 v- Water int. detection with emulsion detector Optimization of the detector structure
2016. Jan - May	60kg Iron target ECC with Emulsion Shifter	 Data-MC comparison with high statistics. v_e CC event detection

- We have demonstrated the basic experimental concept at J-PARC site.
- "Detector performance run" is started from this Jan.

Status of T60

Emulsion gel production in the lab

Nuclear emulsion films were made by ourselves.

Signal efficiency \rightarrow Grain density Isolated random noise \rightarrow Fog density

Initial performance for each production batch

Initial and long-term performance of new emulsion gel is kept at safety level for signal and noise.

T. Fukuda, NuFact 2016

Conceptual detector design

----Shifter

2kg iron target ECC

SS floor @J-PARC (Jan. 2015)

- Emulsion Cloud Chamber is a sandwich structure of emulsion films and iron plates.
- Emulsion detector is placed In front of T2K near detector, INGRID.
- Emulsion Shifter give a timing info. to emulsion tracks.
- Muon ID is possible by combined analysis with INGRID.

T. Fukuda, NuFact 2016

12

Data taking by emulsion scanning system

Latest very high speed scanning system developed in Nagoya Univ.

Position distribution

Track Quality Selection (track linearity vs blackness)

T. Fukuda, NuFact 2016

Reconstructed track data

Multi-track vertex search

Selection :

Search plate \rightarrow PL4-PL37

- 1. Multi track vertex (\geq 3) Minimum hit plates of tracks \geq 3
- 2. Black attached vertex (\geq 3) Minimum hit plates of tracks \geq 2

4 track vertex – 4

3 track vertex – 15

(include Nuclear fragments)

T. Fukuda, NuFact 2016

e⁺e⁻ pair search

We will estimate their energy and investigate their origin.

Proton identification

T. Fukuda, NuFact 2016

Time stamp for v event with Emulsion Shifter

T. Fukuda, NuFact 2016

Emulsion-INGRID Hybrid analysis

Time resolution for emulsion tracks

Feasibility study: 1.5kg Water target ECC

T. Fukuda, NuFact 2016

Water target emulsion chamber

We installed a water target emulsion chamber during $\overline{\mathbf{v}}$ exposure in May 2015.

Sandwich structure of Emulsion films and Frame type spacers

mulsion films (vacuum packed)

Feasibility study: 1.5kg Water target ECC

T. Fukuda, NuFact 2016

Water target emulsion chamber

First detection of v - Water interaction with Emulsion Detector

depth=620um

Detector Run

We are starting Detector Run to compare MC with high statistics.

T60: GRAINE 2011 version T60 extension GRAINE 2015 version

v exposure : 2016 @SS

end of Jan. \rightarrow end of May (~4x10²⁰POT)

- Iron target (total~60kg : 500µm seg.)
- High statistics (3-4k v_u events)
- v_e detection (20-30 v_e CC events)

T. Fukuda, NuFact 2016

Detector preparation

~52kg gel and ~359 films (25 x 25cm²) production is completed.

Repeatability for driving in each stage is well below 0.5µm. 25

T. Fukuda, NuFact 2016

Detector preparation

We carried out "Refresh" process to delete noise tracks like OPERA experiment.

T. Fukuda, NuFact 2016

Installation @J-PARC (Jan. 11-20)

Test operation of the emulsion shifter @NA

Detector components were moved down to SS floor with crane operation.

Detector Run: 60kg Iron target ECC T. Fukuda, NuFact 2016 Installation @J-PARC (Jan. 11-20) Detector was constructed @SS floor. T60 emulsion detector is mounted in cooling box to keep good quality (no refresh). compressor Emulsion shifter PM **T60** Iron target ECC **INGRID** all prevention frame

monitoring

T. Fukuda, NuFact 2016

Operation status (Jan. - Jun)

The temperature in the cooling chamber

Scanning status

6 scanning area for one films with small overlap area.

Track position (10⁴ tracks/cm²)

Multi track vertex search

Preliminary result

PL26-PL43:ECC1:Area1 ~1/70 of total area

(expected ~ 45) 6 track vertex – 1 5 track vertex – 1 4 track vertex – 3 3 track vertex – 31

(include Nuclear fragments)

Summary

- We are performing a neutrino experiments at J-PARC to study low energy neutrino - nucleus interactions and exploration of a possible existence of sterile neutrinos with nuclear emulsion.
- We are carrying out a test experiment at J-PARC (T60) to check the feasibility and detector performance.
- Beam exposure and film development for the 60kg iron target ECC was successfully done and the scanning is now in progress.
- In near future, we plan the next water target exposure.

Discussion for the project is welcome !