Review on eV-Scale Sterile Neutrino Searches at Short Baseline

Alessandro Minotti - CEA Saclay

alessandro.minotti@cea.fr

12th Rencontres du Vietnam - NuFact

Reactor Antineutrino Anomaly

 New computation of v̄ spectrum for Double Chooz arXiv:1101.2755 → 5% precision and ~6% excess wrt results from previous reactor experiments = RAA

- Possible explanations
 - Errors in previous experiments
 - Problems in the anti-neutrino spectrum prediction
 - Oscillation with a sterile neutrino in the eV Δm² scale

Reactor Antineutrino Anomaly

 New computation of v̄ spectrum for Double Chooz arXiv:1101.2755 → 5% precision and ~6% excess wrt results from previous reactor experiments = RAA

- Possible explanations
 - Errors in previous experiments

- Data Bay and Reno confirmed the anomaly (reactor related)
- Problems in the anti-neutrino spectrum prediction
- Oscillation with a sterile neutrino in the eV Δm² scale

Light Sterile Neutrinos

· If we add a 4th neutrino with a 0.1-1 eV mass, @ very short baseline

- The existence of an ~eV sterile neutrino is supported by other anomalies (LSND, MiniBooNE, Gallium anomaly)
 - ...but a global simple answer is disfavoured by disappearance results

Limits from Daya Bay + Bugey

- Current reactor neutrino experiments (Double Chooz, Daya bay, Reno) are little sensitive to a Δm²~eV-driven oscillation (see accurate θ₁₃ measurements)
- Nonetheless, Daya bay was was able to produce an exclusion plot combining results with Bugey-3

To be more sensitive to the RAA, need to go closer and see the oscillation

Sterile Neutrino Search @ Very Short Baseline

Movable detector

arXiv:1212.2182

- Segmented detector or precise enough vertex reconstruction
- ...you can confirm (disproof) the oscillation @ Δm²~1eV if you observe (not observe) a significant
 - + Deviation from the 1/R² flux variation (rate)
 - Distortion in the energy spectrum @ different distances (shape)

Sterile Neutrino Search with Sources: SOX

- Main challenges for reactor \bar{v} @ very short baseline: cosmic (surface level) and reactor-induced background
- A v source inside an underground detector profits from strong bkg suppression, but is not as powerful as a reactor (up to the PBq compared to $10^{17} \bar{v}$ /s MW_{th})
- CeSOX uses ¹⁴⁴Ce and the BoreXino detector (β^- , 285 days half life)
 - LS purification → quasi bkg-free experiment (10⁴ IBDs/1.5 y vs ~1 accidental/y)

energy resolution (~3.5% @ 2 MeV)

NuFact - Quy Nhon, 21-27 Aug 2016

Sterile Neutrino Search with Reactors

Spectral Distortion @ 5 MeV

• Anomalous spectral distortion @ 5MeV in θ_{13} reactor neutrino experiments

Accurate ²³⁵U spectrum measurement can

- Help find out the nature of the distortion
- Constrain existing reactor models

arXiv:15.12.xxx

Signal and Background

Signal: inverse beta decay (IBD)

Signature: two-fold coincidence

- Prompt: e^+ ionisation+annihilation ($E_{e+} = 1-8$ MeV, $E_{\nu} \simeq E_{e+} + 0.8$ MeV)
- Delayed: n-Capture
 - + n+Gd→Gd^{*}+γ's (8 MeV)
 - + n+⁶Li→α+³H (4.78MeV)

Background: fast neutrons

- From cosmic µ spallation and reactor
- Online rejection: overburden, active veto, PSD
- Offline rejection: subtraction from reactor-off periods

- Background: accidental coincidences
 - Reactor related (n_{th} leakage, high-E γ 's from n-capture on metals, ¹⁶N, ecc.)
 - On-side measurements

 Rejection with shielding and topological cuts

A Worldwide Effort

A Worldwide Effort

	P _{Th}	Overburden	Segmentation	Baseline	Material
Chandler	72 MW (²³⁵ U)	~10mwe	6.2 cm (3D)	5.5m	PS + Li layer
DANSS	3GW (LEU)	~50 mwe	5 cm (2D)	10.7-12.7 m	Gd-doped PS
NEOS	2.8 GW (LEU)	~20 mwe	_	23.7 m	Gd-doped LS
Neutrino4	100 MW (²³⁵ U)	~10mwe	10 cm (2D)	6-12m	Gd-doped LS
NuLat	40/1790 MW (²³⁵ U/LEU)	fewmwe	6.35 cm (3D)	4.7/24 m	Li-doped PS
Prospect	85 MW (²³⁵ U)	fewmwe	15 cm (2D)	7-10 m	Li-doped LS
SoLið	72MW (²³⁵ U)	~10 mwe	5 cm (3D)	5.5-10 m	PS + Li layer
Stereo	57 MW (²³⁵ U)	~15/18mwe	25 cm (1D)	8.8-11.2m	Gd-doped LS

DANSS

- @ the 3GW_{th} WWER-1000 reactor (h = 3.6 m, \alpha = 3.1 m), in the Kalinin nuclear power plant
- Beneath the reactor: ~50 mwe shielding (factor 6 μ flux reduction)
- Movable platform (up-down), distance detector-core 10.7-12.7 m

NuFact - Quy Nhon, 21-27 Aug 2016

Alessandro Minotti - CEA Saclay

DANSS

- Detector consisting of X and Y modules of plastic scintillators (with Gd) + WLS
 - ~20 pe/MeV, σ_E/E~16% @ 1 MeV

Calibration with tagged muon tracks (assuming linear charge-E dependence"
 above 1 MeV prompt energy threshold) and the ²⁴⁸Cm n source

NuFact - Quy Nhon, 21-27 Aug 2016

Alessandro Minotti - CEA Saclay

50

DANSS

- Data taking running now! 5000 v/day (~5% cosmics in the 78% fiducial volume)
 - First results of neutrino rates ratios @ different positions with 27 days
 - Now technical stop (shielding being improved), wait systematics before go public
- Expected sensitivity with one year (95% CL, systematics: 1% E scale + 1% bkg)

NuFact - Quy Nhon, 21-27 Aug 2016

Alessandro Minotti - CEA Saclay

NEOS

- • @ the Yeonggwang reactor (same as RENO): 5 cores of 2.8 GW_{th}, h = 3.7 m, ⊗ = 3.1 m, 256 m between neighbour cores
- ~30 mwe overburden, 23.7 m fixed baseline \rightarrow sensitivity @ higher Δm^2

ecay Events

IBD Prompt Energy Spectrum

Saclay

NEOS

- Data taken 07/15-05/16: 49 days with the reactor OFF, 180 days ON
- IBD counts ~ 2000/day with S/B~23
- Latest results with exclusion plot released @ $[M_i T_i(\sin 2\theta, \Delta m_{41}^2) B_i']^2 \chi^2(\sin^2\theta_{14}, \Delta m_{41}^2) = \sum \frac{[M_i T_i(\sin^2\theta, \Delta m_{41}^2) B_i']^2}{M_i + (t_{on}/t_{off})B_i} + \chi^2_{penalty}$ • Two analysis: one with a oscillatory fit only (χ^2 /NDoF = 52.3/38), one with the addition of a fit for the 5 MeV bump (χ^2 /NDoF = 111/67)

NuFact - Quy Nhon, 21-27 Aug 2016

Alessandro Minotti - CEA Saclay

Neutrino-4

- @ the 100 MW_{Th} compact-core (35x42x42 cm³) SM-3 reactor in Dimitrovgrad
- Movable detector: 6-12 m from core
 - Tank of LS + PMTs
 - Passive shielding of 60 tons
 - Active internal and external veto

Neutrino-4

 Preliminary results with prototype 3501 tank divided in 4x4 sections, placed in 5 positions (rate-only analysis)

 Full scale detector (3m³ for 5x10 sections) aims to 1.5-3% statistical accuracy after 2y of data taking

NuFact - Quy Nhon, 21-27 Aug 2016

Alessandro Minotti - CEA Saclay

NuLat

- Finely 3D segmented detector: 15x15x15 ⁶Li-loaded (0.5%) plastic scintillator cubes (6.35 cm/side), spaced by thin air gaps (~0.127 mm) arXiv:1501.06935
- Raghavan Optical Lattice: detection material with high n (n_{PS} = 1.54) divided into cells by a lower n material (n_{air} ~ 1)
 - Total internal reflection: $\theta_{critic} = 45^{\circ} \rightarrow$ light guided along 3 axis to 6 PMTs
 - Very good light collection and resolution: 600 pe/MeV, σ_E/E~4% @ 1MeV

Virginia

NuLat

 IBD: large deposit in one cell (e⁺ scintillation) + small halo (e⁺ annihilation, 0.1-1.0 MeV) + 7 µs-delayed n-capture with mono-E PSD (~400 keV, 65% in a near cell)

22

- Gammas: no halo (single Compton) or big halo (multiple Compton)
- Cosmogenic β emitters: no halo
- Fast neutrons: PSD

and Technology

Virginia Tech

NuLat

- 5x5x5 demonstrator under construction: final assembly in fall 2016
- Deployment at 2 reactors: NIST (Maryland) and North Anna (Virginia)
- Successful 5x5x5 demonstration will lead to the next (15x15x15) stage

See also: P03.053, P03.054, P03.056

- · @ Oak Ridge compact-core (h = 0.5 m, ∞ = 0.2 m) 85 MWth HFIR reactor
- Two detectors/phases:
 - Near detector 7-10 m from core (sterile v search + ²³⁵U spectrum)
 - Far detector 15-18 m from core (improved oscillation study if sterile v is confirmed)
- Phase-I detector: segmented LS tank

ded LS (with PSD capability)

tical segments: identify ticle interaction, reject showers

194 cm –

IBD selection based on PSD, topology, timing

- 3σ coverage of the favoured region in 3y data taking + test of reactor model

26

NuFact - Quy Nhon, 21-27 Aug 2016

Alessandro Minotti - CEA Saclay

SoLid

- @ 60 MW_{th} compact-core (0.5 m diameter) BR2 reactor in Mol (Belgium), baseline range ~ 5.5 - 10 m
- Highly 3D segmented detector
 - 5×5×5cm³ PVT cubes (optically separated)
 - ⁶LiF:ZnS(Ag) for neutron identification
 - Optical fibers and silicon PMTs
- Event topology used to identify IBDs
 - e⁺ scintillation E deposit contained
 - e^+ annihilation γ 's escaping the first cell
 - n-capture near first cell, identified via PSD

- Prototype SMI deployed late 2014 (50 hr reactor on, long reactor off, calibration)
- University of BRISTOL BRISTOL BRISTOL
- IBD selection based on PSD, topology, timing (n detection efficiency ~70%)

Alessandro Minotti - CEA Saclay

- Phase-I SoLid 1.6t scale detector currently under construction, with upgrades
 - reduced background (container + water shielding)
 University of BRISTOL
 light yield (material + number of fibres/cube doubled)

 - **neutron detection** (neutron ID @ trigger level)
- Expected ~50 pe/MeV per cube, $\sigma_E/E \sim 14\%/\sqrt{E}$
- Aiming to **S:N ~ 3:1** with ε_{IBD} ~ 30%
- **Deployed early 2017**

scintillator cubes (6.2x6.2x6.2cm³) - Raghavan Optical Lattice: total internal

- Sheets of ⁶LiF:ZnS for n identification

reflection and very good light collection

- MiniCHANDLER (8×8×5 system test) is fully funded, currently under and will be deployed at a commercial nuclear plant
- CHANDLER planned to be deployed @ BR2 for the SoLid phase-II: extended coverage to higher Δm²

NuFact - Quy Nhon, 21-27 Aug 2016

Alessandro Minotti - CEA Saclay

CHANDLER: a SoLid Near Detect

· CHANDLER detector: 16x16x16 array of

30

- VM2000 + air-gap + acrylic sandwiches (total reflection) to transport light to PMTs
- Looking for oscillation patterns: relative shape in the 6 identical cells (different L)

NuFact - Quy Nhon, 21-27 Aug 2016

- Full on-site measurements for μ , n and γ backgrounds
- Reactor bkg reduced with shielding from core/neighbours
 - µ-metal (magnetic fields)
 - Polyethylene + B⁴C (reactor-induced neutrons)
 - Lead (reactor-induced γ-rays)
 - Soft iron (magnetic fields)

NuFact - Quy Nhon, 21-27 Aug 2016

Alessandro Minotti - CEA Saclay

STEREO detector fully integrated, first calibration runs taken with empty detector

NuFact - Quy Nhon, 21-27 Aug 2016

- STEREO detector is now @ ILL and waits for filling
- Data taking this autumn, two reactor cycles expected by spring 2017
- STEREO aims to cover the reactor anomaly region in ~1 year of data taking

+ 400 ν/day in 300 days

- S/B = 1.5
- v flux + 4% norm uncut
- Visible $E_{e+} > 2 \text{ MeV}$
- $E_n > 5 \text{ MeV} \epsilon_{det}=60\%$

NuFact - Quy Nhon, 21-27 Aug 2016

Conclusions

- · We are now entering an exciting season of the sterile neutrino search era
- Reactor very short baseline experiments play a major role in the search of the sterile neutrino
- The RAA region can be covered in the year scale
- These experiments can also shed light in the complex matter of reactor flux estimation
- The measure is challenging (near-surface cosmics level, reactor facilities)...
- ...But many different techniques and technologies have been developed to reach this goal
- SBL experiments are scattered all over the world, some are currently taking or about to take data, so stay tuned!

... thank you for you attention

A special thank to: David Lhuillier, Leonidas Kalousis, Jelena Maricic, Derek Rountree, Pieter Mumm, Yoomin Ho, Anatolii Serebrov

Spectral Distortion @ 5 MeV

- 3σ (1.6σ) significance wrt flux prediction with (without) background constraint - origin still unknown
- First observed in Double Chooz (then Daya Bay & Peeno)

Backgr

Slight impact on RAA sensitivity pot²

Reactor neutrinos

Alessandro Minotti (CEA)

 $N_{v}^{\exp}(E,t) = \frac{N_{p} \varepsilon}{4\pi L^{2}} \times \frac{P_{th}(E)}{\sqrt{E}}$

Neutrino Spectrum Prediction

• \bar{v}_{e} produced in β -decay of fission products (235U, 239Pu, 241Pu an $\langle E_{f} \rangle = \sum \alpha_{k}(t) \langle E_{f} \rangle_{k}$

Reactor neutrinos

LSND and Gallium Anomalies

- Other anomalies suggesting the presence of extra sterile neutrinos at ~eV scale
 - v_e appearence: LNSD & MiniBooNE excess in short-baseline v_µ→v_e oscillations (somehow disfavoured by disappearance results)
 - v_e disappearence: radioactive sources used to test SAGE & GALLEX obtained rates lower than expected

