

eV Scale Sterile at LBL & SBL (Accelerator-based searches)

Roxanne Guenette University of Oxford

Sterile neutrinos?

Experiment	Type	Channel	Significance
LSND	DAR	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ CC}$	3.8σ
MiniBooNE	SBL accelerator	$\nu_{\mu} \rightarrow \nu_{e} \text{ CC}$	3.4σ
MiniBooNE	SBL accelerator	$\bar{\nu}_{\mu} \to \bar{\nu}_{e} \text{ CC}$	2.8σ
GALLEX/SAGE	Source - e capture	ν_e disappearance	2.8σ
Reactors	Beta-decay	$\bar{\nu}_e$ disappearance	3.0σ

K. N. Abazajian et al. "Light Sterile Neutrinos: A Whitepaper", arXiv:1204.5379 [hep-ph], (2012)

Sterile neutrinos?

Experiment	Type	Channel	Significance
LSND	DAR	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ CC}$	3.8σ
MiniBooNE	SBL accelerator	$\nu_{\mu} \rightarrow \nu_{e} \text{ CC}$	3.4σ
MiniBooNE	SBL accelerator	$\bar{\nu}_{\mu} \to \bar{\nu}_e \text{ CC}$	2.8σ
GALLEX/SAGE	Source - e capture	ν_e disappearance	2.8σ
Reactors	Beta-decay	$\bar{\nu}_e$ disappearance	3.0σ

This talk

Next talk

K. N. Abazajian et al. "Light Sterile Neutrinos: A Whitepaper", arXiv:1204.5379 [hep-ph], (2012)

Global explanation?

MiniBooNE low-energy excess tension

 MiniBooNE low-energy excess (neutrino mode) is hard to explain with additional neutrino(s)

Impact on future LBL

 CP-violation and MH measurements will be impacted by the presence of sterile neutrinos

R. Gandhi, B. Kayser, M. Masud, S. Pakrash, arXiv:1508.06275

Recent results

- IceCube B. Jones' talk
- Reactor experiments A. Minotti's talk
- Long-baseline experiments have looked for sterile neutrinos
 - → T2K
 - → Minos/Minos+
 - → Nova

Recent results

- IceCube B. Jones' talk
- Reactor experiments A. Minotti's talk
- Long-baseline experiments have looked for sterile neutrinos
 - → T2K
 - → Minos/Minos+
 - → Nova

Recent results

Long-baseline experiments have looked for sterile neutrinos

13

Minos / Minos +

Minos / Minos +

• Look at ν_e appearance in FD based on ND predictions

Expect 56.7 events, observe 78

 \geq 2.3 σ excess

Minos / Minos +

Look at

/e 78

2.3σ excess

What's next then?

SBN programme at Fermilab

SBN programme at Fermilab

SBN proposal arxiv:1503.01520

Status of SBN -> MicroBooNE

- MicroBooNE has been taking neutrino data since October 2015
- > 1/2 data set accumulated in first year

Upgrades underway

Reconstruction!

Automated

Run 3493 Event 27435, October 23rd, 2015

Pip Hamilton's talk

Status of SBN

Status of SBN -> SBND

- TPC construction has begun!
- Detector installation planned for Summer 2017

Commissioning and operation in 2018

Status of SBN -> ICARUS

- Detector refurbishment is underway (complete early 2107)
- Installation at FNAL in 2017
- Commissioning and operations 2018

JSNS² (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source)

Searching for neutrino oscillation : $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ with baseline of 24m. no new beamline, no new buildings are needed \rightarrow quick start-up

JSNS² (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source)

- Received Stage-1 approval from KEK and J-PARC directorates in March 2015
- Recently received funding to build first of two detector modules
- JSNS² expects to take data in 2018-2019

Direct test of LSND!

Decay-at-rest options (IsoDAR)

 IsoDAR -> Using cyclotron to produce isotope ⁸Li that will decay at rest

J. Alonso talk

Summary

Conclusion

- Several anomalies in neutrino experiments (all $\sim 3\sigma$)
- No clear coherence in the results (a lot of tension)
- Need to test the anomalies directly
- Understanding these anomalies is crucial for the future LBL experiments in order to properly interpret CP-violation and MH measurements
- Some approved experiments will help (e.g. SBN), but we are cutting it fine!
- The next years will be critical for sterile neutrino searches, stay tuned!

SBN programme at Fermilab (disappearance)

Nova

G. S. Davies, Joint Exp. Theo. Phys. Seminar, FNAL, 2016

Minos+

SBN programme at Fermilab

