GLOBAL CONSTRAINTS ON SEESAW NEUTRINO MIXING

Josu Hernandez-Garcia

Based on:

- JHEP 1608 (2016) 033: E. Fernandez-Martinez, JHG and J. Lopez-Pavon
- JHEP 1510 (2015) 130: E. Fernandez-Martinez, JHG, J. Lopez-Pavon and M. Lucente

OUTLINE

- MOTIVATION
- Introduction
- The two scenarios: G-SS & 3N-SS
- PARAMETRIZATIONS
- OBSERVABLES
- Results of the Global Fit
- 1-LOOP EFFECT
- SUMMARY

Motivation

MOTIVATION

Neutrino masses are one of the most promising open windows to physics beyond the Standard Model (SM).

MOTIVATION

Neutrino masses are one of the most promising open windows to physics beyond the Standard Model (SM).

By adding heavy ν_R to SM particle content, neutrino masses arise in a simple and natural way.

$$\ell_{\alpha} \frac{1}{N_{R}} \phi \qquad \mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2} \overline{N_{R}^{i}} (M_{N})_{ij} N_{R}^{cj} - (Y_{N})_{i\alpha} \overline{N_{R}^{i}} \phi^{\dagger} \ell_{L}^{\alpha} + \text{h.c.}$$

MOTIVATION

Neutrino masses are one of the most promising open windows to physics beyond the Standard Model (SM).

By adding heavy ν_R to SM particle content, neutrino masses arise in a simple and natural way.

A set of EW and flavor observables are going to be used to constrain the additional neutrino mixing.

Once the new heavy states are integrated out, the SM-Seesaw can be considered as a low energy effective theory:

• dim-5 Weinberg op. gives masses to the light ν :

Introduction

Once the new heavy states are integrated out, the SM-Seesaw can be considered as a low energy effective theory:

• dim-6 op. induces non-unitarity in the mixing matrix N of lepton charged current interactions:

$$\frac{c_{\alpha\beta}^{\text{dim-6}}}{\Lambda^2} \left(\overline{L}_{\alpha} \tilde{\phi} \right) i \gamma^{\mu} \partial_{\mu} \left(\tilde{\phi}^{\dagger} L_{\beta} \right) \xrightarrow{\text{EWSB}} \eta = \frac{1}{2} m_D^{\dagger} M_N^{-2} m_D = \frac{1}{2} \Theta \Theta^{\dagger}$$

$$\longrightarrow \text{conserves } L$$

A. Broncano, M.B. Gavela, and E.E. Jenkins, Phys. Lett. **B552**, 177 (2003)

Once the new heavy states are integrated out, the SM-Seesaw can be considered as a low energy effective theory:

• dim-6 op. induces non-unitarity in the mixing matrix N of lepton charged current interactions:

$$\frac{c_{\alpha\beta}^{\text{dim-6}}}{\Lambda^2} \left(\overline{L}_{\alpha} \tilde{\phi} \right) i \gamma^{\mu} \partial_{\mu} \left(\tilde{\phi}^{\dagger} L_{\beta} \right) \xrightarrow{\text{EWSB}} \eta = \frac{1}{2} m_D^{\dagger} M_N^{-2} m_D = \frac{1}{2} \Theta \Theta^{\dagger}$$

$$N = (I - \eta) U_{\text{PMNS}}$$

since η is Hermitian \Rightarrow the most general parametrization for N.

dim-5:
$$\hat{m} = m_D^t M_N^{-1} m_D$$
 violates L

dim-6:
$$\eta = \frac{1}{2} m_D^{\dagger} M_N^{-2} m_D$$
 conserves L

If smallness of m_{ν} comes only from the suppression with M_N

mixing η much more suppressed

experimental verification extremely challenging

dim-5:
$$\hat{m} = m_D^t M_N^{-1} m_D$$

violates L

dim-6:
$$\eta = \frac{1}{2} m_D^{\dagger} M_N^{-2} m_D$$

conserves L

Meaningful bounds imply
$$\begin{cases} M_i \sim \mathcal{O}(\Lambda_{\text{EW}}) \\ Y_N \sim \mathcal{O}(1) \end{cases} \Rightarrow \hat{m} \text{ too large}$$

Alternatively, smallness of m_{ν} may naturally stem from an approximate L instead of a huge hierarchy of masses

R. Mohapatra and J. Valle, Phys.Rev. **D34**, 1642 (1986)

J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez, and J. Valle,

Phys. Lett. **B187**, 303 (1987)

G.C. Branco, W. Grimus, and L. Lavoura, Nucl. Phys. B312, 492 (1989)

In particular:

$$m_D = \frac{v_e}{\sqrt{2}} \begin{pmatrix} v_\mu & v_\tau & & & N_1 \ N_2 & N_3 \\ I & 1 & 1 & & \\ Y_e & Y_\mu & Y_\tau \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \ N_1 \\ -1 \ N_2 \\ 0 \ N_3 \end{pmatrix} \begin{pmatrix} L = 1 \ -1 & 0 \\ 0 \ \Lambda & 0 \\ 0 \ 0 & \Lambda' \end{pmatrix} \begin{pmatrix} 1 \ N_1 \\ -1 \ N_2 \\ 0 \ N_3 \end{pmatrix}$$

where N_i is an arbitrary number of extra heavy fields.

If L is exact: $\hat{m} = 0$ while $\eta \neq 0$ and arbitrarily large.

R. Alonso, M. Dhen, M. Gavela, and T. Hambye, JHEP **1301**, 118 (2013)

A. Abada, D. Das, A. Teixeira, A. Vicente, and C. Weiland, JHEP **1302**, 048 (2013)

In particular:

$$m_D = \frac{v_{\text{EW}}}{\sqrt{2}} \begin{pmatrix} Y_e & Y_{\mu} & Y_{\tau} \\ \epsilon_1 Y'_e & \epsilon_1 Y'_{\mu} & \epsilon_1 Y'_{\tau} \\ \epsilon_2 Y''_e & \epsilon_2 Y''_{\mu} & \epsilon_2 Y''_{\tau} \end{pmatrix} M_N = \begin{pmatrix} \mu_1 & \Lambda & \mu_3 \\ \Lambda & \mu_2 & \mu_4 \\ \mu_3 & \mu_4 & \Lambda' \end{pmatrix}$$

where N_i is an arbitrary number of extra heavy fields.

If
$$\epsilon_i$$
 and μ_j small $\not L$ terms introduced $\Rightarrow L$ mildly broken $\Rightarrow \begin{cases} \hat{m} \neq 0 \\ m_i \sim \mathcal{O} \text{ (eV)} \end{cases}$

while $\eta \neq 0$ and arbitrarily large.

R. Alonso, M. Dhen, M. Gavela, and T. Hambye, JHEP **1301**, 118 (2013) A. Abada, D. Das, A. Teixeira, A. Vicente, and C. Weiland, JHEP **1302**, 048 (2013)

In particular:

$$m_D = \frac{v_{\text{EW}}}{\sqrt{2}} \begin{pmatrix} Y_e & Y_{\mu} & Y_{\tau} \\ \epsilon_1 Y'_e & \epsilon_1 Y'_{\mu} & \epsilon_1 Y'_{\tau} \\ \epsilon_2 Y''_e & \epsilon_2 Y''_{\mu} & \epsilon_2 Y''_{\tau} \end{pmatrix} M_N = \begin{pmatrix} \mu_1 & \Lambda & \mu_3 \\ \Lambda & \mu_2 & \mu_4 \\ \mu_3 & \mu_4 & \Lambda' \end{pmatrix}$$

where N_i is an arbitrary number of extra heavy fields.

If ϵ_i and μ_j small $\not L$ $\Rightarrow L$ mildly broken $\Rightarrow \begin{cases} \hat{m} \neq 0 \\ m_i \sim \mathcal{O} \text{ (eV)} \end{cases}$

while $\eta \neq 0$ and arbitrarily large.

R. Alonso, M. Dhen, M. Gavela, and T. Hambye, JHEP **1301**, 118 (2013) A. Abada, D. Das, A. Teixeira, A. Vicente, and C. Weiland, JHEP **1302**, 048 (2013)

The 2 scenarios: G-SS & 3N-SS

The 2 scenarios: G-SS & 3N-SS

We have studied 2 different scenarios:

- G-SS: a completely general scenario
 - SM is extended with an arbitrary number of ν_R
 - they are heavier than $\Lambda_{\rm EW}$
 - no further assumptions

The 2 scenarios: G-SS & 3N-SS

We have studied 2 different scenarios:

- G-SS: a completely general scenario
 - SM is extended with an arbitrary number of ν_R
 - they are heavier than $\Lambda_{\rm EW}$
 - no further assumptions
- 3N-SS: a 3 heavy neutrino scenario
 - SM is only extended with 3 ν_R
 - they are heavier than $\Lambda_{\rm EW}$
 - large New Physics effects in spite of the smallness of m_{ν}
 - $-m_{\nu}$ radiatively stable

• G-SS: a completely general scenario

Where N parametrized by:

$$N = (I - \eta) U_{\text{PMNS}}$$
 the m since

the most general one since η is Hermitian.

$$\eta = \begin{pmatrix} \eta_{ee} & \eta_{e\mu} & \eta_{e\tau} \\ \eta_{e\mu}^* & \eta_{\mu\mu} & \eta_{\mu\tau} \\ \eta_{e\tau}^* & \eta_{\mu\tau}^* & \eta_{\tau\tau} \end{pmatrix} \quad \text{where} \quad \sqrt{2\eta_{\alpha\alpha}} = \sqrt{\sum_{i} |\Theta_{\alpha i}|^2}$$

represents the total mixing from all N_{R_i} with the flavor α .

• G-SS: a completely general scenario

Where N parametrized by:

$$N = (I - \eta) U_{\rm PMNS}$$
 the most general one since η is Hermitian.

$$\eta = \begin{pmatrix} \eta_{ee} & \eta_{e\mu} & \eta_{e\tau} \\ \eta_{e\mu}^* & \eta_{\mu\mu} & \eta_{\mu\tau} \\ \eta_{e\tau}^* & \eta_{\mu\tau}^* & \eta_{\tau\tau} \end{pmatrix} \quad \text{where} \quad \sqrt{2\eta_{\alpha\alpha}} = \sqrt{\sum_{i} |\Theta_{\alpha i}|^2}$$

represents the total mixing from all N_{R_i} with the flavor α .

Since
$$|\eta_{\alpha\beta}| \leq \sqrt{\eta_{\alpha\alpha}\eta_{\beta\beta}}$$
 Schwarz inequality indirect constraints on the off-diagonal entries

• G-SS: a completely general scenario

Where N parametrized by:

$$N = (I - \eta) U_{\rm PMNS}$$
 the most general one since η is Hermitian.

$$\eta = \begin{pmatrix} \eta_{ee} & \eta_{e\mu} & \eta_{e\tau} \\ \eta_{e\mu}^* & \eta_{\mu\mu} & \eta_{\mu\tau} \\ \eta_{e\tau}^* & \eta_{\mu\tau}^* & \eta_{\tau\tau} \end{pmatrix} \quad \text{where} \quad \sqrt{2\eta_{\alpha\alpha}} = \sqrt{\sum_{i} |\Theta_{\alpha i}|^2}$$

represents the total mixing from all N_{R_i} with the flavor α .

Since
$$|\eta_{\alpha\beta}| \leq \sqrt{\eta_{\alpha\alpha}\eta_{\beta\beta}}$$
 Schwarz inequality indirect constraints on the off-diagonal entries

• 3N-SS: a 3 heavy neutrino scenario

Where the only Seesaw that saturates the bounds:

 $M_{1,2} \sim \Lambda$ (pseudo Dirac pair), $M_3 \sim \Lambda'$ (decoupled) but

$$\Theta \simeq \frac{1}{\sqrt{2}} \begin{pmatrix} -i\theta_e & \theta_e & 0 \\ -i\theta_\mu & \theta_\mu & 0 \\ -i\theta_\tau & \theta_\tau & 0 \end{pmatrix} \text{ with } \theta_\alpha \equiv \frac{vY_\alpha}{\sqrt{2}\Lambda}$$

Since
$$\eta = \frac{\Theta\Theta^{\dagger}}{2}$$
 $\eta = \frac{1}{2} \begin{pmatrix} |\theta_e|^2 & \theta_e\theta_{\mu}^* & \theta_e\theta_{\tau}^* \\ \theta_{\mu}\theta_e^* & |\theta_{\mu}|^2 & \theta_{\mu}\theta_{\tau}^* \\ \theta_{\tau}\theta_e^* & \theta_{\tau}\theta_{\mu}^* & |\theta_{\tau}|^2 \end{pmatrix}$

$$|\eta_{\alpha\beta}| = \sqrt{\eta_{\alpha\alpha}\eta_{\beta\beta}}$$
 Schwarz inequality is saturated

• 3N-SS: a 3 heavy neutrino scenario

Where the only Seesaw that saturates the bounds:

 $M_{1,2} \sim \Lambda$ (pseudo Dirac pair), $M_3 \sim \Lambda'$ (decoupled) but

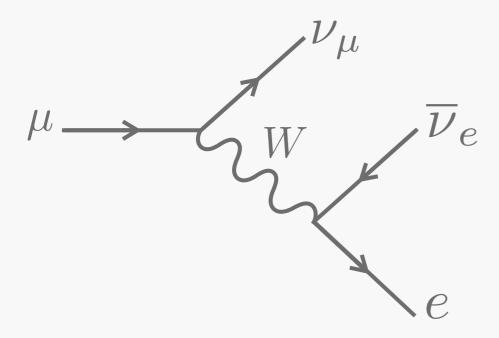
$$\Theta \simeq \frac{1}{\sqrt{2}} \begin{pmatrix} -i\theta_e & \theta_e & 0 \\ -i\theta_\mu & \theta_\mu & 0 \\ -i\theta_\tau & \theta_\tau & 0 \end{pmatrix} \text{ with } \theta_\alpha \equiv \frac{vY_\alpha}{\sqrt{2}\Lambda}$$

Since
$$\eta = \frac{\Theta\Theta^{\dagger}}{2}$$
 $\eta = \frac{1}{2} \begin{pmatrix} |\theta_e|^2 & \theta_e\theta_{\mu}^* & \theta_e\theta_{\tau}^* \\ \theta_{\mu}\theta_e^* & |\theta_{\mu}|^2 & \theta_{\mu}\theta_{\tau}^* \\ \theta_{\tau}\theta_e^* & \theta_{\tau}\theta_{\mu}^* & |\theta_{\tau}|^2 \end{pmatrix}$

Fixing ν osc. data: $\theta_{ij} \& \Delta m_{ij}^2 \Rightarrow Y_{\tau} = Y_{\tau}(m_{1,3}, \delta, \phi_1, \phi_2)$

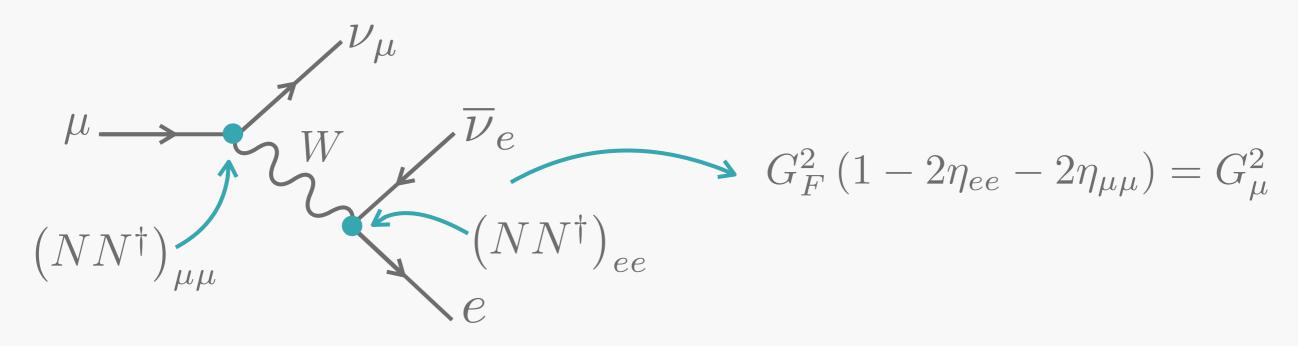
The 28 observables are computed in terms of α , G_{μ} and M_Z .

• The W boson mass M_W $G_F \text{ measured in the } \mu \text{ decay}$



The 28 observables are computed in terms of α , G_{μ} and M_Z .

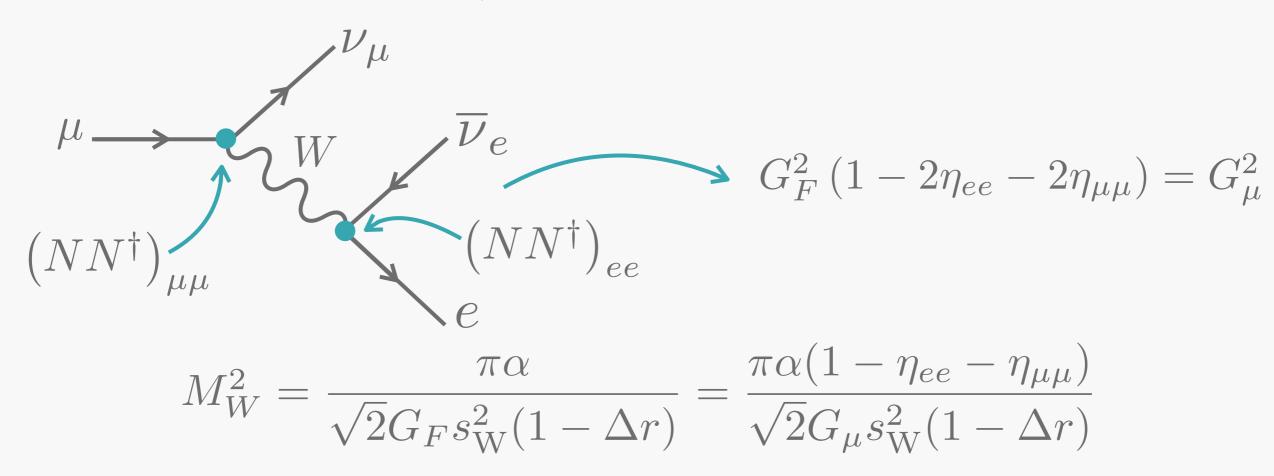
• The W boson mass M_W $G_F \text{ measured in the } \mu \text{ decay}$



The 28 observables are computed in terms of α , G_{μ} and M_Z .

• The W boson mass M_W

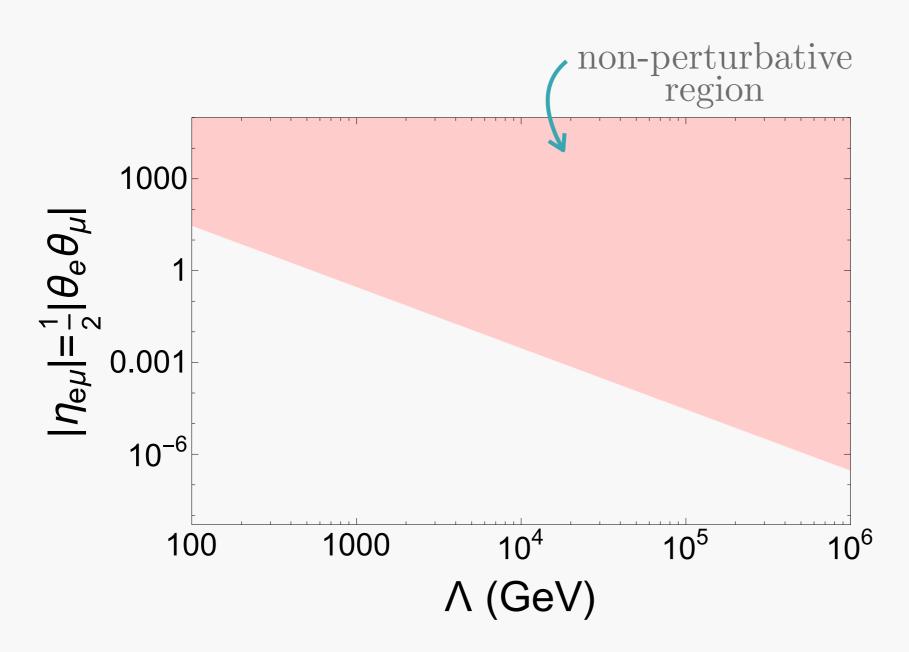
 G_F measured in the μ decay

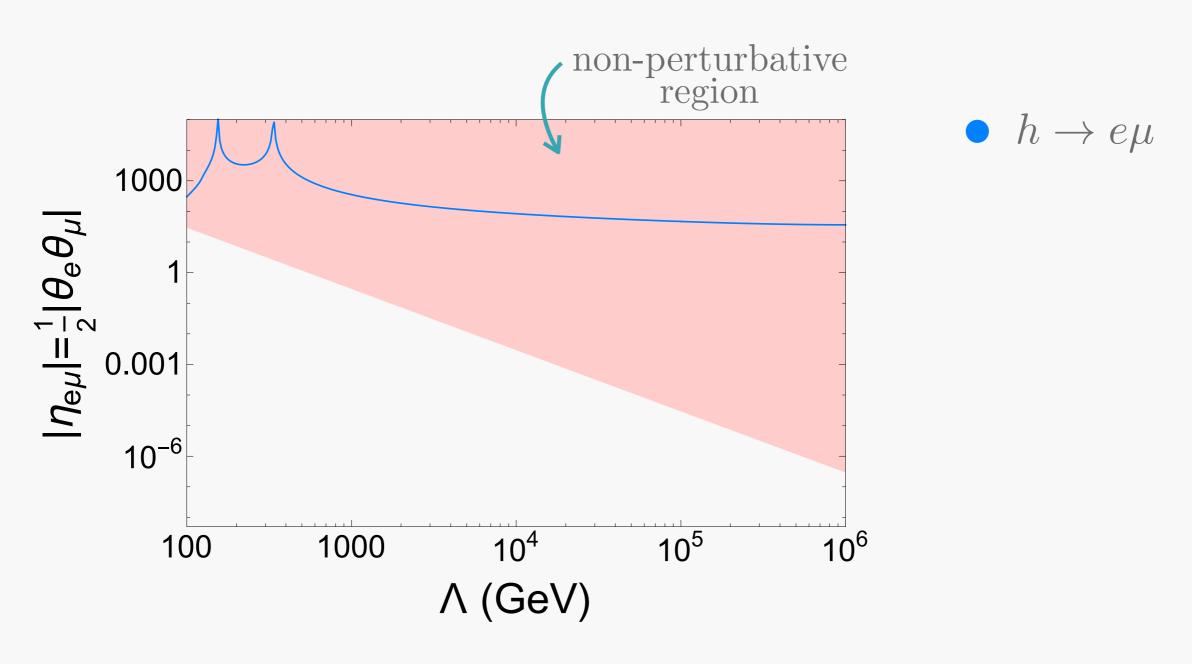


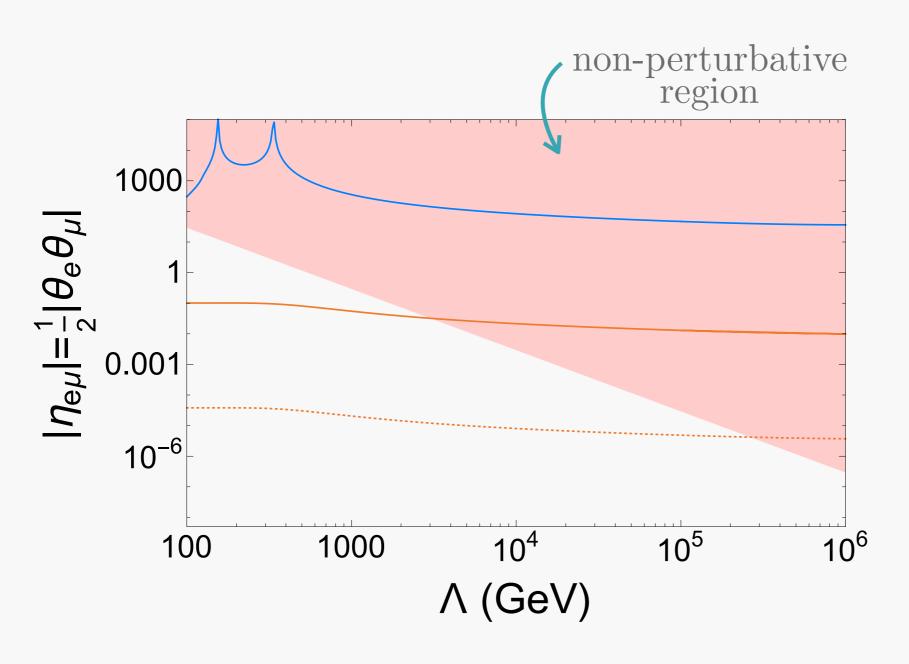
kinematical measurements of M_W constrain η_{ee} and $\eta_{\mu\mu}$

The 28 observables are computed in terms of α , G_{μ} and M_Z .

- The W boson mass M_W
- The effective weak mixing angle θ_{W} : $s_{W \text{ eff}}^{2 \text{ lep}} \& s_{W \text{ eff}}^{2 \text{ had}}$
- 4 ratios of Z fermionic decays: R_l , R_c , R_b & $\sigma_{\rm had}^0$
- The invisible Z width $\Gamma_{\rm inv}$
- Universality ratios: $R^{\pi}_{\mu e}$, $R^{\pi}_{\tau \mu}$, $R^{W}_{\mu e}$, $R^{W}_{\tau \mu}$, $R^{K}_{\mu e}$, $R^{K}_{\tau \mu}$, $R^{l}_{\mu e}$ & $R^{l}_{\tau \mu}$
- 9 decays constraining the CKM unitarity

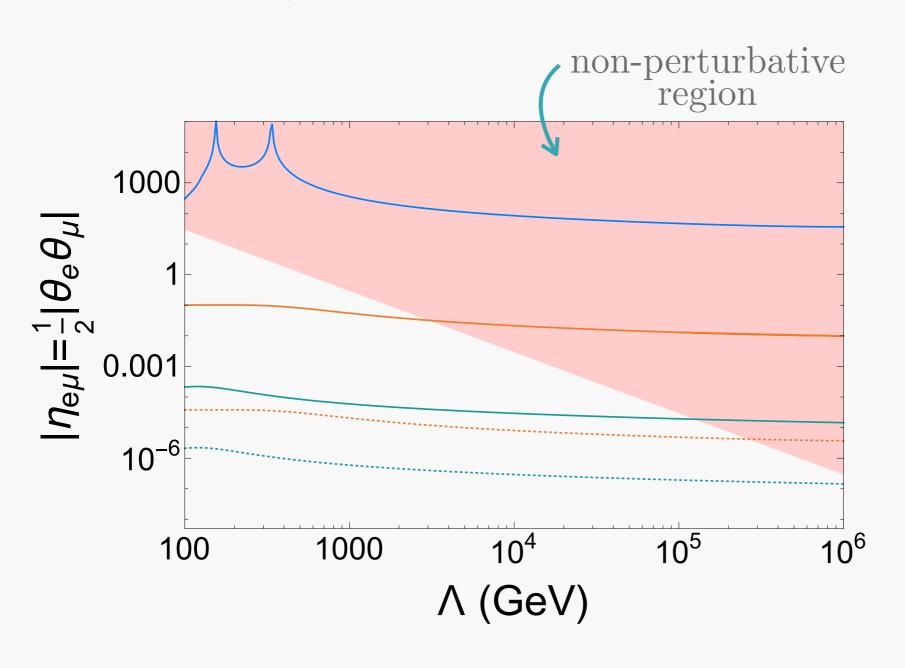




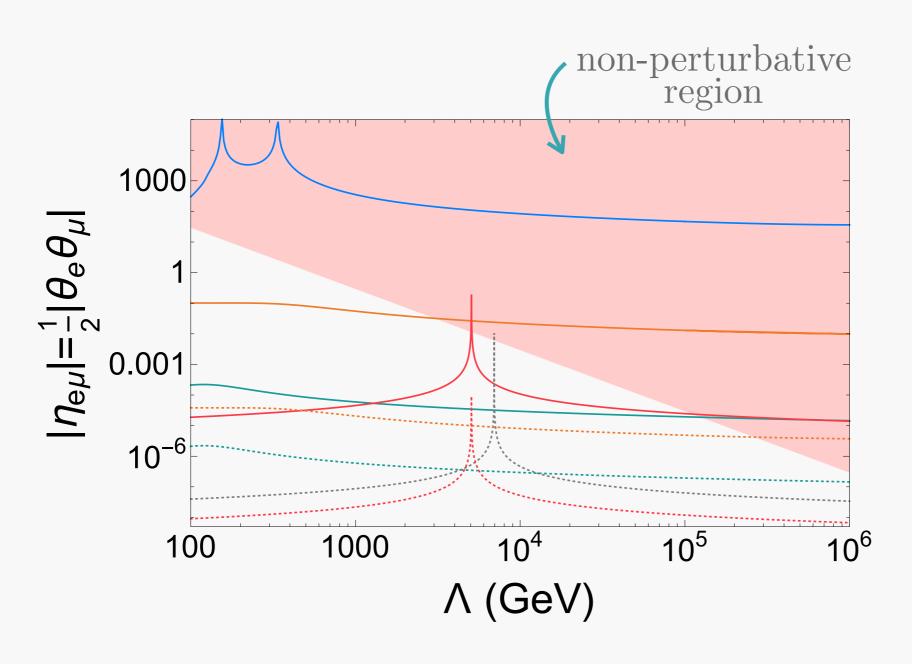


$$\bullet$$
 $h \rightarrow e\mu$

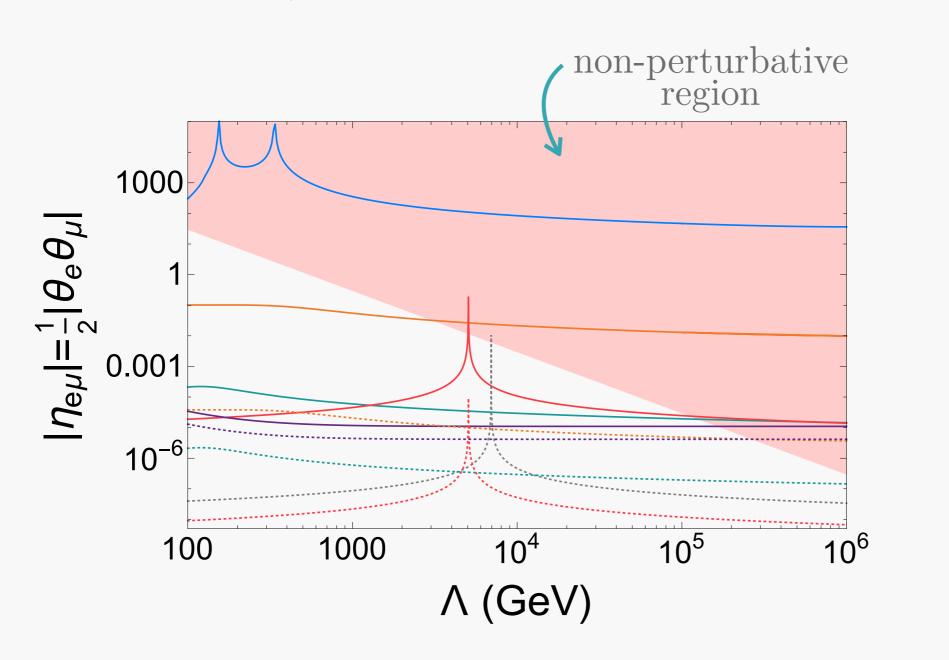
$$\begin{array}{c} \bullet & h \rightarrow e \mu \\ \bullet & Z \rightarrow e \mu \end{array}$$



- $\begin{array}{c} \bullet & h \rightarrow e \mu \\ \bullet & Z \rightarrow e \mu \\ \bullet & \mu \rightarrow e e e \end{array}$



- $h \rightarrow e\mu$
- $Z \rightarrow e\mu$
- \bullet $\mu \rightarrow eee$
- $\mu \rightarrow e$ (Ti)
- $\mu \rightarrow e$ (Al)



•
$$h \rightarrow e\mu$$

•
$$Z \rightarrow e\mu$$

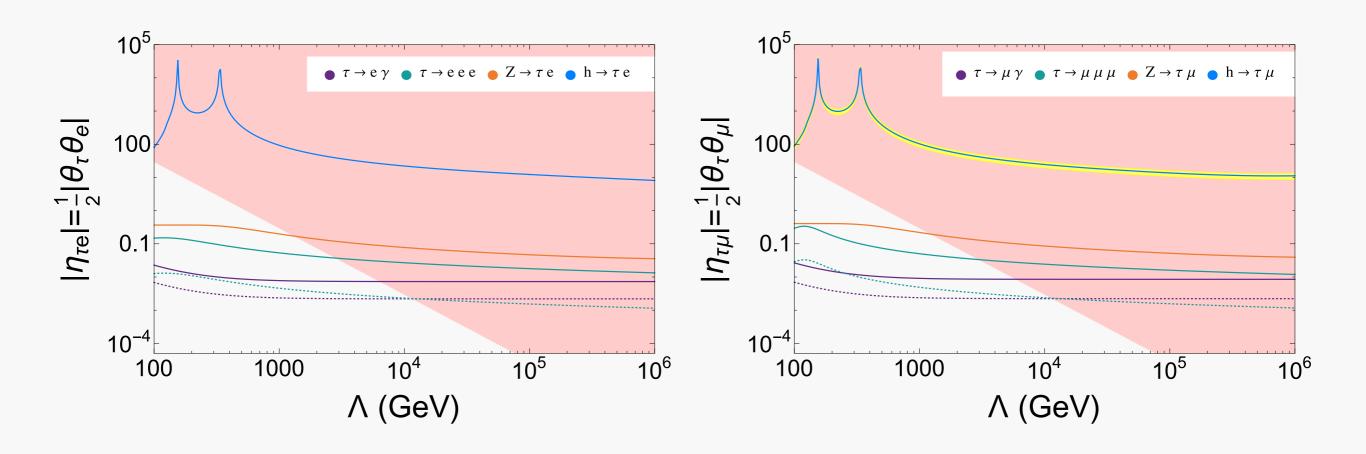
$$\bullet$$
 $\mu \rightarrow eee$

•
$$\mu \rightarrow e$$
 (Ti)

•
$$\mu \to e$$
 (Al)

$$\bullet \ \mu \to e \gamma$$

LFV decays: $\tau - e \& \tau - \mu$ transitions

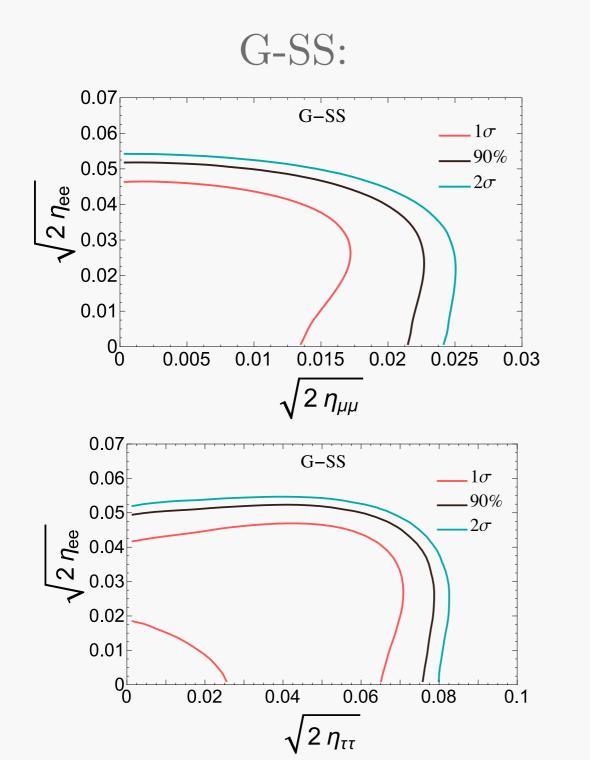


OBSERVABLES

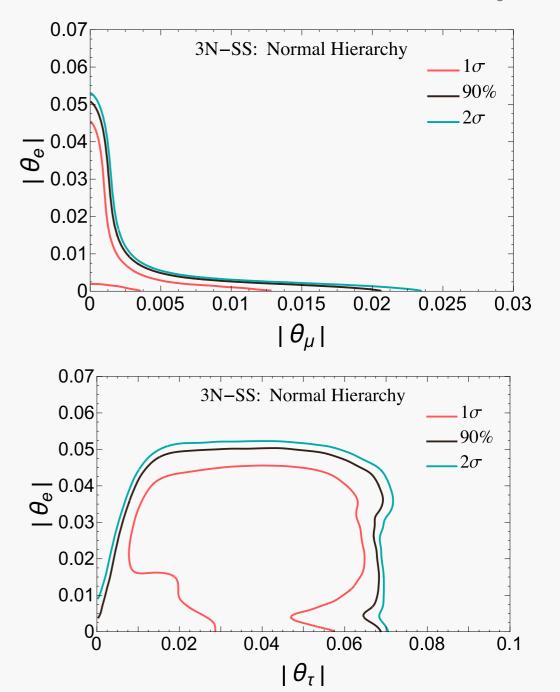
The 28 observables are computed in terms of α , G_{μ} and M_Z .

- The W boson mass M_W
- The effective weak mixing angle θ_{W} : $s_{W \text{ eff}}^{2 \text{ lep}} \& s_{W \text{ eff}}^{2 \text{ had}}$
- 4 ratios of Z fermionic decays: R_l , R_c , R_b & $\sigma_{\rm had}^0$
- The invisible Z width $\Gamma_{\rm inv}$
- Universality ratios: $R^{\pi}_{\mu e}$, $R^{\pi}_{\tau \mu}$, $R^{W}_{\mu e}$, $R^{W}_{\tau \mu}$, $R^{K}_{\mu e}$, $R^{K}_{\tau \mu}$, $R^{l}_{\mu e}$ & $R^{l}_{\tau \mu}$
- 9 decays constraining the CKM unitarity
- 3 rare LFV decays: $\mu \to e\gamma$, $\tau \to \mu\gamma$ & $\tau \to e\gamma$

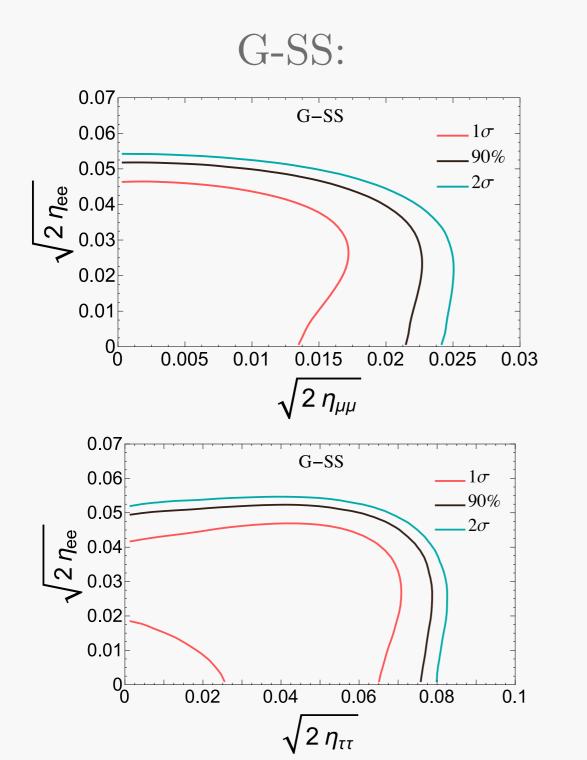
MCMC with the 28 observables scanning over the free parameters



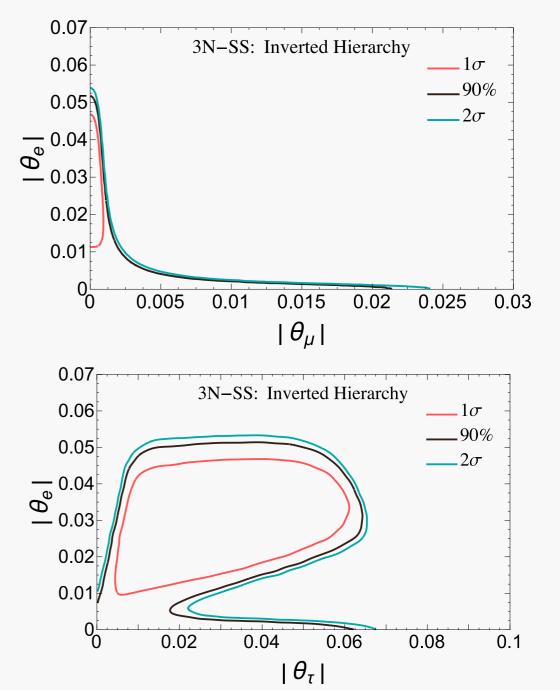
3N-SS: Normal Hierarchy



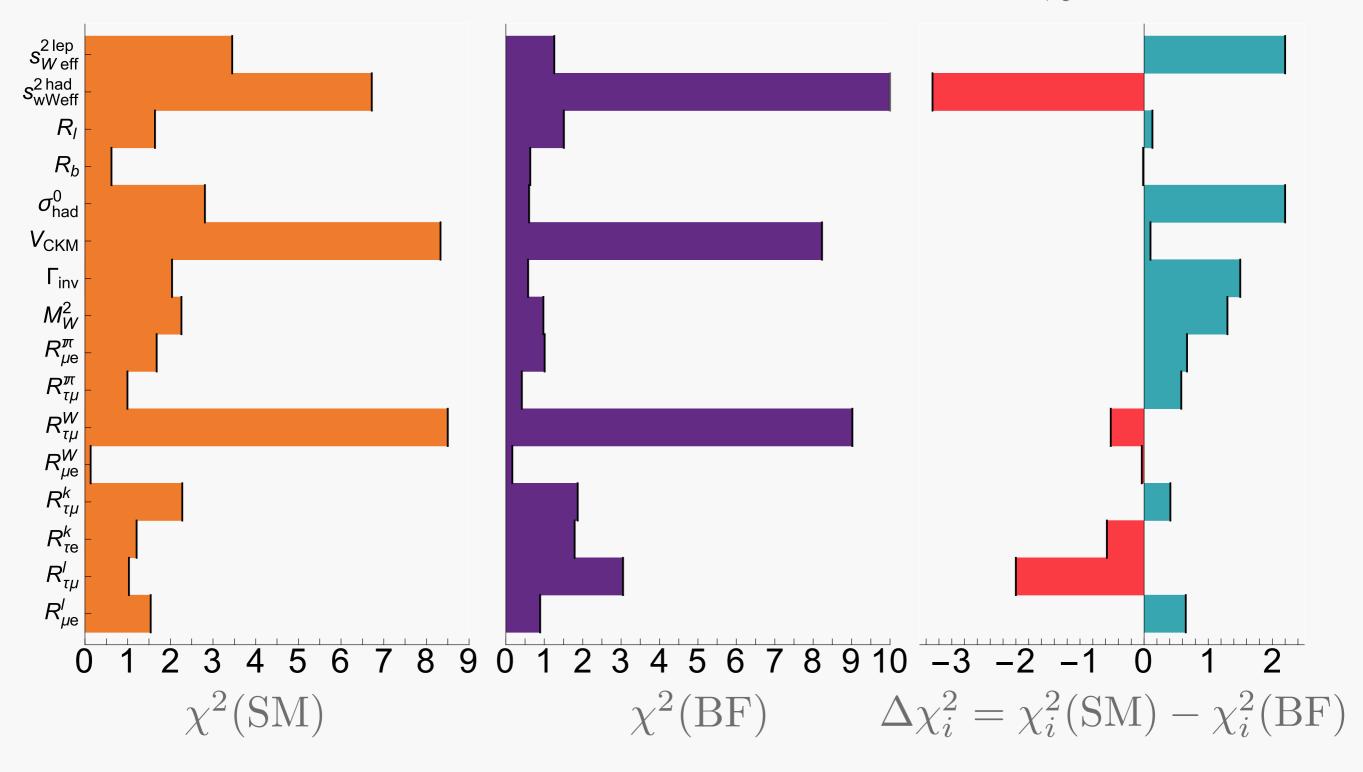
MCMC with the 28 observables scanning over the free parameters



3N-SS: Inverted Hierarchy



Contributions from the different observables to the χ^2 :



Global fit: diagonal entries of the mixing matrix

G-SS:	3N-SS:	
	NH	IH
$\sqrt{2\eta_{ee}} = 0.031^{+0.010}_{-0.020}$	$ \theta_e = 0.029^{+0.012}_{-0.020}$	$ \theta_e = 0.031_{-0.012}^{+0.010}$
$\sqrt{2\eta_{\mu\mu}} < 0.011$	$ \theta_{\mu} < 7.6 \cdot 10^{-4}$	$ \theta_{\mu} < 6.9 \cdot 10^{-4}$
$\sqrt{2\eta_{\tau\tau}} = 0.044^{+0.019}_{-0.027}$	$ \theta_{\tau} = 0.043^{+0.018}_{-0.027}$	$ \theta_{\tau} = 0.037^{+0.021}_{-0.032}$

Global fit: diagonal entries of the mixing matrix

G-SS:	3N-SS:	
	NH	IH
$\sqrt{2\eta_{ee}} = 0.031^{+0.010}_{-0.020}$	$ \theta_e = 0.029^{+0.012}_{-0.020}$	$ \theta_e = 0.031_{-0.012}^{+0.010}$
$\sqrt{2\eta_{\mu\mu}} < 0.011$	$ \theta_{\mu} < 7.6 \cdot 10^{-4}$	$ \theta_{\mu} < 6.9 \cdot 10^{-4}$
$\sqrt{2\eta_{\tau\tau}} = 0.044^{+0.019}_{-0.027}$	$ \theta_{\tau} = 0.043^{+0.018}_{-0.027}$	$ \theta_{\tau} = 0.037_{-0.032}^{+0.021}$

Global fit: off-diagonal entries of the mixing matrix

Schwarz inequality

G-SS:		3N-SS:	
LFC	LFV	NH	IH
$\sqrt{2 \eta_{e\mu} } < 0.018$	$\sqrt{2 \eta_{e\mu} } < 4.1 \cdot 10^{-3}$	$\sqrt{ \theta_e \theta_\mu } < 4.1 \cdot 10^{-3}$	$\sqrt{ \theta_e \theta_\mu } < 4.1 \cdot 10^{-3}$
$\sqrt{2 \eta_{e\tau} } < 0.045$	$\sqrt{2 \eta_{e\tau} } < 0.107$	$\sqrt{ \theta_e \theta_\tau } = 0.036^{+0.010}_{-0.016}$	$\sqrt{ \theta_e \theta_\tau } = 0.036^{+0.010}_{-0.023}$
$\sqrt{2 \eta_{\mu\tau} } < 0.024$	$\sqrt{2 \eta_{\mu\tau} } < 0.115$	$\sqrt{ \theta_{\mu}\theta_{\tau} } < 0.007$	$\sqrt{ \theta_{\mu}\theta_{\tau} } < 0.005$

Global fit: off-diagonal entries of the mixing matrix

G-SS:		3N-SS:	
LFC	LFV	NH	IH
$\sqrt{2 \eta_{e\mu} } < 0.018$	$\sqrt{2 \eta_{e\mu} } < 4.1 \cdot 10^{-3}$	$\sqrt{ \theta_e \theta_\mu } < 4.1 \cdot 10^{-3}$	$\sqrt{ \theta_e \theta_\mu } < 4.1 \cdot 10^{-3}$
$\sqrt{2 \eta_{e\tau} } < 0.045$	$\sqrt{2 \eta_{e\tau} } < 0.107$	$\sqrt{ \theta_e \theta_\tau } = 0.036^{+0.010}_{-0.016}$	$\sqrt{ \theta_e \theta_\tau } = 0.036^{+0.010}_{-0.023}$
$\sqrt{2 \eta_{\mu\tau} } < 0.024$	$\sqrt{2 \eta_{\mu\tau} } < 0.115$	$\sqrt{ \theta_{\mu}\theta_{\tau} } < 0.007$	$\sqrt{ \theta_{\mu}\theta_{\tau} } < 0.005$

Schwarz inequality

Several observables go with:

$$\frac{|\theta_e|^2}{2} + \frac{|\theta_\mu|^2}{2} + 2\alpha T \qquad T = \frac{\Sigma_{WW}(0)}{M_W^2} - \frac{\Sigma_{ZZ}(0)}{M_Z^2}$$

W and Z boson propagators corrected by the heavy ν_R :

$$\frac{W}{\mathbf{w}} = \frac{W}{\mathbf{w}} + \frac{W}{\mathbf{w}} \underbrace{\int_{N_R}^{W} W} = \frac{Z}{\mathbf{w}} + \frac{Z}{\mathbf{w}} \underbrace{\int_{N_R}^{N_R} Z}_{N_R} \underbrace{\sum_{ZZ}}_{ZZ}$$

Several observables go with:

$$\frac{|\theta_e|^2}{2} + \frac{|\theta_\mu|^2}{2} + 2\alpha T \qquad T = \frac{\Sigma_{WW}(0)}{M_W^2} - \frac{\Sigma_{ZZ}(0)}{M_Z^2}$$

W and Z boson propagators corrected by the heavy ν_R :

$$W = W + W \bigcup_{N_R}^{\ell} W \qquad Z = Z + Z \bigcup_{N_R}^{N_R} Z \bigcup_{N_R}^$$

A cancellation between tree and loop level could be posible.

This relaxes some bounds allowing to fit some anomalies.

If L is mildly broken $\Rightarrow T \geq 0 \Rightarrow \text{No cancellation allowed}$

$$\frac{|\theta_e|^2}{2} + \frac{|\theta_\mu|^2}{2} + 2\alpha T$$

If L is mildly broken $\Rightarrow T \geq 0 \Rightarrow$ No cancellation allowed

$$\frac{|\theta_e|^2}{2} + \frac{|\theta_\mu|^2}{2} + 2\alpha T$$

T < 0 only possible for large L

If L is mildly broken $\Rightarrow T \geq 0 \Rightarrow$ No cancellation allowed

$$\frac{|\theta_e|^2}{2} + \frac{|\theta_\mu|^2}{2} + 2\alpha T$$

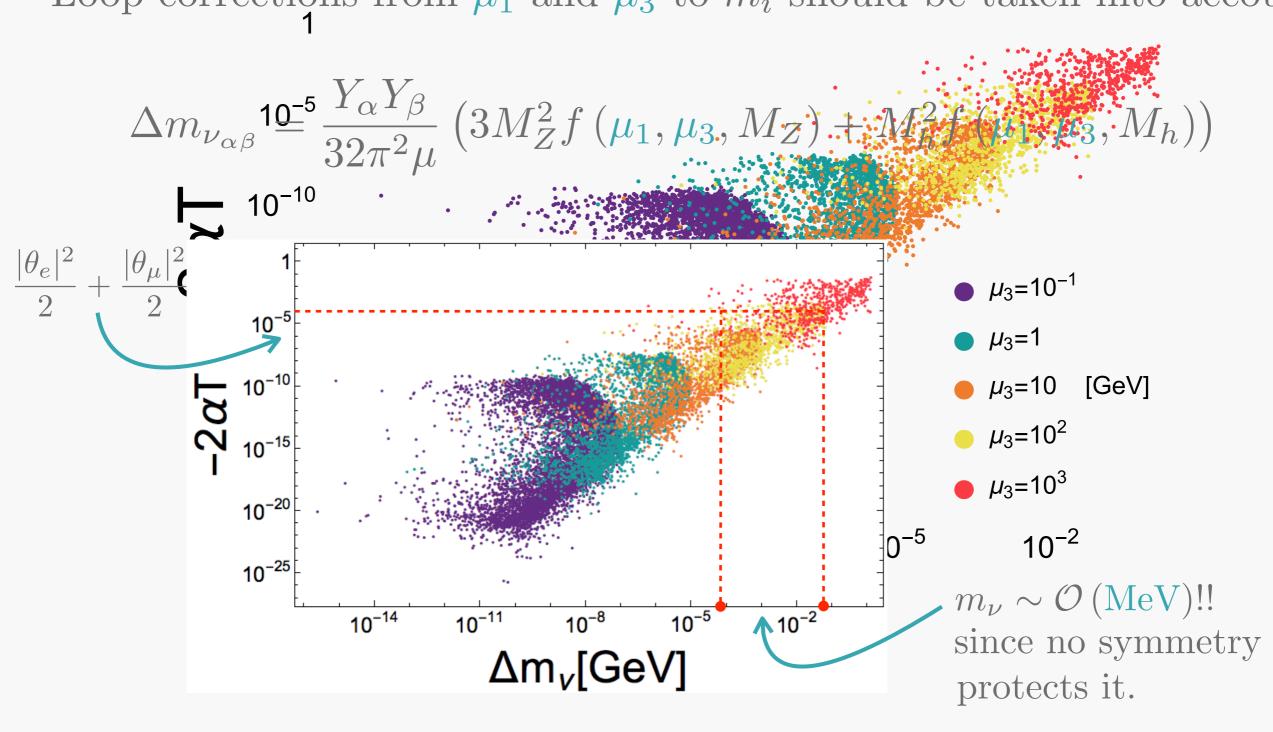
T < 0 only possible for large $\not L$

$$m_i^{\text{tree}} \sim v_{\text{EW}}^2 Y^2 \left(\frac{1}{\Lambda} \mathcal{O} \left(\epsilon_1, \frac{\mu_2}{2\Lambda} \right) + \frac{1}{\Lambda'} \mathcal{O} \left(\epsilon_2^2, \frac{\mu_4}{4\Lambda^2} \right) \right)$$

large $\not \! L$ driven by μ_1 and μ_3

$$T \simeq \frac{v_{\rm EW}^4}{64\pi s_{\rm W}^2 M_W^2} \left(\sum_{\alpha} |Y_{\alpha}|^2\right)^2 f(\mu_1, \mu_3)$$

Loop corrections from μ_1 and μ_3 to m_i should be taken into account:



SUMMARY

A set of EW and flavor observables have been used to constrain the additional mixing in two different scenarios.

A non-zero value for e and τ mixings with a significance of 2σ and an upper bound for μ mixing found in both scenarios.

In the G-SS scenario, $\eta_{e\mu}$ is constrained by $\mu \to e\gamma$ while $\eta_{\tau e}$ and $\eta_{\tau\mu}$ are constrained by indirect bounds through Schwarz inequality.

In a L-conserving Seesaw model loop effects are negligible.

THANKS