Searching for Neutrinoless Double Beta Decay with Bolometers -- CUORE/CUPID

Ke Han Shanghai Jiao Tong University August 25th, 2016 NuFact 2016

Double beta decay in experiments

- Extremely rare events $T_{1/2} > 10^{24}$ year.
- Experimentally try to search for a peak on the spectrum of total energy of electrons.
- ¹³⁰Te: isotopically abundant and favorable in terms of half-life requirement

Detection channels

NuFact 2016 - ICISE, Vietnam

Large mass bolometer

Bolometer: measure energy via temperature change

$$\mathsf{D}T = \frac{E}{C} \qquad t \sim \frac{C}{G}$$

CUORE: TeO₂ crystals

 $5 \times 5 \times 5 \text{ cm}^3$, 750 g

ΔT = 0.1 mK/MeV at 10 mK base temperature

Arrays of TeO₂ bolometers

CUORE (Cryogenic Underground Observatory for Rare Events)

- Search for $\partial \nu \beta \beta$ of ¹³⁰Te and other rare events
- 988 TeO₂ crystals run as a bolometer array
 - 19 Towers
 - 13 floors
 - 4 modules per floor
 - 741 kg total; 206 kg ¹³⁰Te
 - 10^{27 130}Te nuclei
- 10 mK base temperature in a custom dilution refrigerator
- Gran Sasso underground lab (LNGS), Italy

CUORE (Cryogenic Underground Observatory for Rare Events)

- Search for $\partial \nu \beta \beta$ of ¹³⁰Te and other rare events
- 988 TeO₂ crystals run as a bolometer array
 - 19 Towers
 - 13 floors
 - 4 modules per floor
 - 741 kg total; 206 kg ¹³⁰Te
 - 10^{27 130}Te nuclei
- 10 mK base temperature in a custom dilution refrigerator
- Gran Sasso underground lab (LNGS), Italy

CUORE (Cryogenic Underground Observatory for Rare Events)

- Search for $\partial \nu \beta \beta$ of ¹³⁰Te and other rare events
- 988 TeO₂ crystals run as a bolometer array
 - 19 Towers
 - 13 floors
 - 4 modules per floor
 - 741 kg total; 206 kg ¹³⁰Te
 - 10^{27 130}Te nuclei
- 10 mK base temperature in a custom dilution refrigerator
- Gran Sasso underground lab (LNGS), Italy

CUORE-module: a tower

- New detector design structure
- Strict material selection (e.g. raw materials)
- Strict surface cleaning technique for Cu and TeO₂
- Minimization of Rn exposure (Glove Box assembly)

8 Cu-PEN

cables

CUORE-0

- The first CUORE tower assembled with CUORE standards
 - Cleaning components
 - Assembly procedure
- Tower Properties
 - 52 crystals, total mass 39 kg
 - Total ¹³⁰Te mass 11 kg
- CUORE-0 tower was installed in the original Cuoricino cryostat.
- Data taking: March 2013 to Aug 2015.
- 9.8 kg \cdot yr of ¹³⁰Te exposure
- Reached CUORE goal of 5 keV FWHM around Q-value

CUORE-0

- The first CUORE tower assembled with CUORE standards
 - Cleaning components
 - Assembly procedure
- Tower Properties
 - 52 crystals, total mass 39 kg
 - Total ¹³⁰Te mass 11 kg
- CUORE-0 tower was installed in the original Cuoricino cryostat.
- Data taking: March 2013 to Aug 2015.
- 9.8 kg \cdot yr of ¹³⁰Te exposure
- Reached CUORE goal of 5 keV FWHM around Q-value

Detector performance: CUORE-0 vs. Cuoricino

- Channel and dataset independent fit
- The 5 keV CUORE goal has been reached

 $\sim \times 6$ reduction in the alpha continuum region

CUORE-0 $0\nu\beta\beta$ results

We find no evidence for $0\nu\beta\beta$ decay of ¹³⁰Te: $T_{1/2}^{0\nu\beta\beta} > 2.7 \times 10^{24}$ yr (90% C.L.)

Fitted background: 0.058 ± 0.004 (stat.) ± 0.002 (syst.) c/(keV kg y)

Combined with Cuoricino: $T_{1/2}^{0\nu\beta\beta}$ (¹³⁰Te)> 4.0 × 10²⁴ yr (90% CL)

Effective Majorana Mass: $m_{\beta\beta} < (270-650) \text{ meV}$

CUORE-0 background model

Identification of the background sources:

- CUORE-0 analysis
- radio-assay measurements
- cosmogenic activation analysis

Fit spectrum with $2\nu\beta\beta$

NuFact 2016 - ICISE, Vietnam

paper in preparation

Building CUORE: detector array assembly

- All 19 ultraclean towers assembled by summer 2014.
- From ~10000 components
- Inside 5 glove boxes (N₂)

NuFact 2016 - ICISE, Vietnam

Cryogenic system commissioning

NuFact 2016 - ICISE, Vietnam

Mini Tower Test Run

- 8 TeO₂ bolometers (Mini-Tower)
- Stable base temperature
- Good energy resolution.
- No unexpected background sources.
- Validation of the electronics, DAQ, temperature stabilization, and calibration systems.

Detector installation

NuFact 2016 - ICISE, Vietnam

From CUORE to CUPID (CUORE Upgrade with Particle ID)

- CUORE sensitivity $T_{1/2}^{0\nu\beta\beta} = 9.5 \times 10^{25} \text{ y} (90\% \text{ CL})$
- Effective Majorana mass down to 50-130 meV.
- CUPID to cover the IH region

CUPID R&D options

Possibility to search $0\nu\beta\beta$ of different isotopes

Bolometry - best of both worlds

- Bolometer utilizes only the low heat capacity of dielectric crystal.
- High efficiency and flexibility in candidate isotope choices.
- Especially valuable for discovery confirmations in different isotopes.

Enriched TeO₂ crystals with Cerenkov light

- Active R&D on light collectors for better resolution
 - 99.9% α background suppression
- Testing 4 enriched crystals
 - Crystal lattice quality
 - Bolometric performance

NuFact 2016 - ICISE, Vietnam

The ZnSe tower

- Search for $0\nu\beta\beta$ of ^{82}Se
- Will be installed in the Cuoricino/CUORE-0 cryostat
- Great background rejection power
- CUPID-0

$CdWO_4$ bolometer for $0v\beta\beta$

- Search for $0\nu\beta\beta$ of ¹¹⁶Cd
- Great background rejection power via the light channel
- arXiv: 1606.07806

CUPID sensitivity studies

- Based on the CUORE design, CUORE cryogenics
- Enriched crystals with background • rejection

Eur. Phys. J. C (2014) 74: 3096.

Active vetoes •

Min expected rate 10^{-1} Max expected rate 5 ton*y discovery potential 10 ton*y discovery potential 10^{-2} 10 20 30 40 50 60 70 80 m_{ee} [meV]

90% sensitivity limits

 10^{2}

10

Crystal	Exposure	$T^{0\nu}_{1/2S}$	$m_{ee} _S$
	[ton·y]	$[10^{27}y]$	[meV]
ZnSe	5	3.3	8–22
	10	6.5	5-15
$CdWO_4$	5	1.5	12-22
	10	3.0	8–15
ZnMoO ₄	5	0.9	9–27
	10	1.4	8-21
TeO_2	5	3.4	7-18
	10	6.8	5-13

NuFact 2016 - ICISE, Vietnam

Ke Han, Shanghai Jiao Tong University

90

100

130 TeO₂ 5 σ discovery potential

Summary and outlook

- CUORE-0 reached energy resolution and background rate requirement.
- Null $\partial v \beta \beta$ result published in PRL.
- $2\nu\beta\beta$ analysis recently presented.
- CUORE, with 206 kg of ¹³⁰Te and 5 keV resolution, is able to reach 50-130 meV effective Majorana mass.
- Detector installation is under way.
- Detector operations will start by the end of this year.
- CUPID, CUORE upgrade with particle ID will cover the inverted hierarchy band.

The CUORE Collaboration

NuFact 2016 - ICISE, Vietnam

Ke Han, Shanghai Jiao Tong University

TABLE I. Systematic uncertainties on $\Gamma_{0\nu}$ in the limit of zero signal (Additive) and as a percentage of nonzero signal (Scaling).

	Additive $(10^{-24} \mathrm{y}^{-1})$) Scaling (%)
Lineshape	0.007	1.3
Energy resolution	0.006	2.3
Fit bias	0.006	0.15
Energy scale	0.005	0.4
Bkg function	0.004	0.8
Signal normalization	0.7%	

- ► For each systematic, we run toy MC expts to evaluate bias on fitted 0v66 decay rate
- Bias is parameterized as p0 + p1×Γ, where p0="additive" and p1="scaling"
- Signal lineshape: Used variety of different lineshapes to model signal
- Energy resolution: Apply 1.05±0.05 correction to calibration-derived resolution
- Fit bias: Effect of using unbinned extended ML fit to extract values
- Energy scale: Assign 0.12 keV uncertainty derived from peak residuals in physics spectrum
- ▶ <u>Bkg function</u>: Treated choice of 0-, 1-, 2-order polynomial as discrete nuisance parameter

TABLE I. Systematic uncertainties on $\Gamma_{0\nu}$ in the limit of zero signal (Additive) and as a percentage of nonzero signal (Scaling).

	Additive (10 ⁻	$^{-24} y^{-1}$) Scaling (%)
Lineshape	0.007	1.3
Energy resolution	0.006	2.3
Fit bias	0.006	0.15
Energy scale	0.005	0.4
Bkg function	0.004	0.8
Signal normalization	l	0.7%

After accounting for systematic uncertainties we report the Bayesian limits:

 $\Gamma^{0\nu\beta\beta}(^{130}\text{Te}) < 0.25 \times 10^{-24} \text{ yr}^{-1} (90\% \text{ C.L., stat.+syst.})$ $T^{0nbb}_{1/2}(^{130}\text{Te}) > 2.7 \times 10^{24} \text{ yr} (90\% \text{ C.L., stat. + syst.})$

Background reduction: from CUORE-0 to CUORE

CUORE background in ROI

- 1. New cryostat with radio-pure materials
 - ightarrow negligible gamma contributions
- 2. More effective self-shielding
 - → Copper surface background can be reduced below background goal.
- 3. More effective anti-coincidence
 - \rightarrow negligible surface alpha from crystals.

Fit spectrum w/o $2v\beta\beta$

Full reconstruction between: 118 keV - 7 MeV

Reconstruction within 3 σ range for most of bins (also in multiplicity 2 spectra)