

Search for 0vββ decay with EXO-200 and nEXO

Guofu Cao

Institute of High Energy Physics, Beijing, China On behalf of the EXO-200 and nEXO Collaborations NuFact 2016, Quy Nhon, Vietnam August 21 – 27, 2016

0v2β: detection? how? when will we be able to know if Dirac and Majorana? complementarity of different planned experiments from WG5 conveners

N_B = number of background counts in the ROI along the measure time

t_{meas} measuring time [y]
 ☆ M detector mass [kg]
 ɛ detector efficiency
 ☆ i.a. isotopic abundance
 A atomic number
 ★ ΔE energy resolution [keV]
 ★★ bkg background [c/keV/y/kg]

Advantage of Xenon:

- Xenon is used both as the source and detection medium.
- ¹³⁶Xe enrichment is easier and safer.
- **Easily scale to tonne scale.**
- Low background -- No long lived radioactive isotopes and can be continuously purified.

Advantage of liquid Xenon TPC:

- Simultaneous collection of both ionization and scintillation signals.
- Full 3D reconstruction of all energy depositions in LXe.
- Monolithic detector structure with excellent background rejection capabilities.
- Background free measurements Ba tagging.

Example of TPC schematics (EXO-200)

- Combine light and ionization to enhance energy resolution
 (E.Conti et al. Phys Rev B 68 (2003) 054201)
- EXO-200 has achieved ~1.28% energy resolution at the Q value.
- * nEXO will reach resolution < 1%, sufficient to suppress background from 2vββ.

However, LXe TPC IS NOT A PURE CALORIMETER, it can use optimally more than just the energy.

- Event multiplicity (SS/MS in EXO-200)
 Distance from the TPC surface
- Particle ID (α-electron)

Event multiplicity information

SS/MS discrimination is a very powerful tool to reject gamma backgrounds, because Compton scattering results in multiple energy deposits. This is well demonstrated in EXO-200.

Monolithic Detectors

Monolithic detector is essential for background rejection:

- Rejection of surface background
- Self-shielding, containment of Compton scattering
- Inner fiducial volume extremely clean

The EXO-200 TPC

200kg of Xe enriched to 80.6% Xe-136 and 175kg LXe inside TPC

- A common cathode + two anodes
 376V/cm drift field
- Each half reading ionization and 178nm scintillation with:
 - ✓ 38 U triplet wire channels (charge)
 - ✓ 38 V triplet wire channels, crossed at 60 degrees (induction)
 - ✓ 234 large area avalanche photodiodes (APDs, light in groups of 7)
 - ✓ All signals digitized at 1 MHz, \pm 1024 µs around trigger (2 ms total)
- Teflon reflectors
- Copper field shaping rings
- Acrylic supports
- Flexible bias/readout cables: copper on kapton, no glue

Precision ¹³⁶Xe 2vββ Measurement

Longest and most precisely measured $2\nu\beta\beta$ half-life

EXO-200 Phase-I results

EXO-200 Phase II Sensitivity

Upgrades made in Phase II:

 APD electronics upgrade improved energy resolution from 1.58% to 1.28% at Q of 0vββ, and might be better with improved data processing.

 Deradonator reduced Rn level by a factor of ~10, sufficient to suppress this background for 0vββ.

EXO-200 can reach $0\nu\beta\beta$ half-life sensitivity of 5.7x10²⁵ ys.

With lower threshold, EXO-200 can improve measurement of 136 Xe $2\nu\beta\beta$ and searches in other physics channels.

EXO-200: Nature (2014), doi:10.1038/nature13432

GERDA Phase 2: Public released result. June, 2016 (frequentist limit)

> KamLAND-Zen: arXiv:1605.02889 (2016)

From EXO-200 to nEXO

What did we learn from EXO-200?

- Measured residual backgrounds consistent with radio-assays and surpassed the design background goal.
- Energy resolution is better than design, σ/E(Q)=1.28%.
- Demonstrated power of standoff distance in monolithic detector.
- Demonstrated power of SS/MS b/g discrimination.

✤ nEXO

- 5 tones of enriched Xe (90% or higher), < 1.0% (σ/E) energy resolution.
- Enhanced self shielding.
- Possible later upgrade to Ba tagging to increase sensitivity.
- Many optimizations from EXO-200 are made to improve a successful design.

EXO-200 Detector

Optimization	Reason
Up to 40 × volume/mass	Inverted hierarchy sensitivity
Move cathode to end	Remove all internal sources of background
6× high voltage	Longer drift length
$> 3 \times electron lifetime$	Longer drift length
Increased photo-coverage	Energy resolution (to 1% σ/E), scintillation threshold
SiPMs over LAAPDs	Higher gain, lower bias, less material, energy resolution, lower scintillation threshold
In LXe front end electronics	Lower noise/lower threshold to ID Compton
Low outgassing materials	Longer electron lifetime
New calibration methods	To calibrate 'deep' detector (by design)
Deeper site	Reduced cosmic activation
Charge tiles over wires	3mm position resolution, simpler/smaller mechanical supports, lower radioactivity

View of conceptual design of nEXO

6,000 m.w.e. depth sufficient to shield cosmogenic background.

nEXO TPC Conceptual Design

- **Cathode is located at the bottom of** TPC.
- A pad-like charge readout tile is on top of TPC.
- Photo-sensors are behind the field shaping rings and will operate in a high field region.

- *** Charge readout tile**
- Photo-detector
- ✤ High voltage
- **∦ Radio-assay**
- ***** Low Background, Cryogenic Electronics
- ***** Calibration
- ***** Low background Cryostat
- Simulation
- ✤ Ba-tagging

Charge readout tile

- EXO-200 used wires for charge readout.
- In nEXO, a modular and pad-like charge collection scheme is under study.
- A 10cm x 10cm prototype has been made by IHEP/IME in China.
- Metallized pads on fused silica substrate.
- Intersections between X and Y are isolated with SiO2 layer.
- 3mm pad pitch, 60 orthogonal channels (30 x 30).
- Currently functional testing in LXe is processing in US.

Prototype charge readout tile

Good energy resolution requires efficient readout of the 175nm scintillation light to be combined with the ionization signal.

Besides high photon detection efficiency (PDE), a desirable photo-detector should also have low noise, reasonable cost, ultra-low radioactivity and availability in m² mount.

VUV sensitive SiPMs

Working with a number of SiPM companies. We have facilities to

- Measure SiPM characterization PDE, dark noise, cross talk, ...
- □ Measure Radio-purity of SiPMs
- **Study SiPM performance in high field.**
- □ Measure reflectivity on SiPM surface.

Other R&D items related to SiPM:

Readout schemes; 3D SiPM; Supporting and connections.

Hamamatsu produces devices with PDE= ~12% @ 175nm (encapsulated devices).

First nEXO-specific run at FBK (Italy) provided ~10% QE [1.Ostrovskiy et al. IEEE TNS 62 (2015) 1.] New "RGB" devices reach PDE = ~15% @175nm.

Radio-assay programs for nEXO

- To achieve nEXO designed sensitivity, backgrounds from different sources must be well controlled.
 - Cosmogenic background
 - Environmental radioactivity
 - Natural and man-made radioactivity
- Various techniques have been used for the material radioactivity measurements.
 - Above ground and underground Ge γspectroscopy
 - Neutron Activation Analysis (NAA) 10⁻⁹ g/g for K, 10⁻¹²-10⁻¹³ g/g for U/Th
 - Inductively Coupled Plasma Mass Spectrometry (ICP-MS, China, Korea, PNNL) – sub ppt
 - Glow Discharge Mass Spectrometry (GD-MS) (NRC, Canada)
 - Radon emanation counting 60 decays/day

ICP-MS at IHEP, Beijing

Ge detector lab at U. of Alabama

Detector simulation

- Simulations plays an important role in detector design optimization and sensitivity prediction.
- A Geant4-based detector simulation software has been developed.

Simulation + radio-assay Background contributions in FWHM (2428-2488 keV) in inner 3-tonne region

Drift field vs Background Rejection

Light Collection Efficiency vs Cathode and Field Rings Reflectivity

Summary

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — J-L Vuilleumier University of California, Irvine, Irvine CA, USA – M Moe California Institute of Technology, Pasadena CA, USA – P Vogel Carleton University, Ottawa ON, Canada — M Dunford, R Gornea, K Graham, R Killick, T Koffas, C Licciardi, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr., T Walton Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen Duke University, Durham NC, USA – PS Barbeau Friedrich-Alexander-University Erlangen, Nuremberg, Germany — G. Anton, R. Bayerlein, J. Hoessl, P. Hufschmidt, A. Jamil, T. Michel, M. Wagenpfeil, G. Wrede, T. Ziegler IBS Center for Underground Physics, Daejeon, South Korea – DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, T Tolba, L Wen, J Zhao ITEP Moscow, Russia – V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, J Zettlemover Laurentian University, Sudbury ON, Canada — B Cleveland, A DerMesrobian-Kabakian, J Farine, U Wichoski University of Maryland, College Park MD, USA – C Hall University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, J King, A Pocar McGill University, Montreal QC, Canada — T Brunner, K Murray SLAC National Accelerator Laboratory, Menlo Park CA, USA — M Breidenbach, R Conley, T Daniels, J Davis, , S Delaquis R Herbst, A Johnson, M Kwiatkowski, B Mong, A Odian, CY Prescott, PC Rowson, JJ Russell, K Skarpaas, A Waite, M Wittgen University of South Dakota, Vermillion SD, USA – J Daughhetee, R MacLellan Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiy, A Schubert, M Weber Stony Brook University, SUNY, Stony Brook, NY, USA – K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany — W Feldmeier, P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, R Krücken, Y Lan, F Retière, V Strickland

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — I-L Vuilleumier Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Yu California Institute of Technology, Pasadena CA, USA – P Vogel Carleton University, Ottawa ON, Canada — I Badhrees, Y Baribeau, M Bowcock, M Dunford, M Facina, R Gornea, K Graham, P Gravelle, R Killick, T Koffas, C Licciardi, K McFarlane, R Schnarr, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, T Walton Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen Duke University, Durham NC, USA – PS Barbeau, G Swift University of Erlangen-Nuremberg, Erlangen, Germany — G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, X Jiang, H Li, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, J Zhao ITEP Moscow, Russia — V Belov, A Burenkov, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich 🗖 University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Indiana University, Bloomington IN, USA — IB Albert, S Daugherty, TN Johnson, LJ Kaufman, G Visser, J Zettlemover University of California, Irvine, Irvine CA, USA – M Moe Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, U Wichoski Lawrence Livermore National Laboratory, Livermore CA, USA — O Alford, J Brodsky, M Heffner, G Holtmeier, A House, M Johnson, S Sangiorgio University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, M Negus, A Pocar McGill University, Montreal QC, Canada — T Brunner, K Murray Oak Ridge National Laboratory, Oak Ridge TN, USA – L Fabris, D Hornback, RJ Newby, K Ziock Pacific Northwest National Laboratory, Richland, WA, USA — EW Hoppe, JL Orrell Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, K Odgers SLAC National Accelerator Laboratory, Menlo Park CA, USA — J Dalmasson, T Daniels, S Delaquis, G Haller, R Herbst, M Kwiatkowski, A Odian, M Oriunno, B Mong, PC Rowson, K Skarpaas University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiy, A Schubert, M Weber Stony Brook University, SUNY, Stony Brook, NY, USA — K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany – P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, P Gumplinger, R Krücken, Y Lan, F Retière, V Strickland

Backup slides

Energy Resolution and 2nbb Background

- While LXe TPCs provide many handles to discriminate backgrounds, energy resolution is the only handle to discriminate $2\nu\beta\beta$ background.
- Future very large scale detectors should have sufficient energy resolution to suppress the $2\nu\beta\beta$ mode.

Events in EXO-200

nEXO, 5 yr data, $0\nu\beta\beta @ T_{1/2}=6.6x10^{27}$ yr, projected backgrounds from subsets of the total volume

Ba-tagging

The EXO-200 detector

200kg of Xe enriched to 80.6% Xe-136 and 175kg LXe inside TPC

- **Located at 1585 m.w.e. in the Waste Isolation Plant near Carlsbad, NM**
 - \checkmark Muon rate is ~ 10⁻⁷ Hz /cm2 /sr
 - ✓ Salt has inherently lower levels of U/Th, compared to rock
- EXO-200 start data taking in June 2011, and stopped on Feb. 5, 2014 due to WIPP incidents --- Phase I data.
- □ April 2016, phase II data taking begins.