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from WG5 conveners 



0νββ requirements 3 

tmeas measuring time [y] 
M detector mass [kg] 
ε detector efficiency 
i.a. isotopic abundance 
A atomic number 
ΔE energy resolution [keV] 
bkg background [c/keV/y/kg] 

2νββ 

0νββ 



Use liquid Xenon TPC to search for 0νββ  4 
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Ionization Scintillation 

Example of TPC schematics (EXO-200) 

       Advantage of Xenon: 
 Xenon is used both as the source 

and detection medium. 


136Xe enrichment is easier and safer. 
 Easily scale to tonne scale. 
 Low background -- No long lived 

radioactive isotopes and can be 
continuously purified. 
 

Advantage of liquid Xenon TPC: 
 Simultaneous collection of both 

ionization and scintillation signals. 
 Full 3D reconstruction of all energy 

depositions in LXe. 
Monolithic detector structure with 

excellent background rejection 
capabilities. 

 Background free measurements – 
Ba tagging. 



Energy measurement 

 Combine light and ionization to 
enhance energy resolution 

(E.Conti et al. Phys Rev B 68 (2003) 054201) 

 EXO-200 has achieved ~1.28% 
energy resolution at the Q value.  

 nEXO will reach resolution < 1%, 
sufficient to suppress background 
from 2νββ.  
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228Th source 

However, LXe TPC IS NOT A PURE 
CALORIMETER, it can use optimally 
more than just the energy.   
 Event multiplicity (SS/MS in EXO-200) 
Distance from the TPC surface 
 Particle ID (α-electron) 



Event multiplicity information 6 
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γ γ 

multiple site 
events (MS) 

2νββ 

single site 
events (SS) 

SS/MS discrimination is a very powerful tool to reject gamma 
backgrounds, because Compton scattering results in multiple 
energy deposits. This is well demonstrated in EXO-200. 



Monolithic Detectors 7 

LXe mass (kg) Diam. or length (cm) 

5000 130 

150 40 

5 13 

5kg 

150kg 

5000kg 

2.5MeV gamma ray attenuation 

length 8.5 cm =  

Monolithic detector is essential for background rejection:  

• Rejection of surface background 

• Self-shielding,  containment of Compton scattering  

• Inner fiducial volume extremely clean  

EXO-200 
nEXO 



The EXO-200 TPC 8 

 A common cathode + two anodes 
 376V/cm drift field 

 Each half reading ionization and 
178nm scintillation with: 
 38 U triplet wire channels (charge) 
 38 V triplet wire channels, crossed at 60 

degrees (induction) 
 234 large area avalanche photodiodes 

(APDs, light in groups of 7) 
 All signals digitized at 1 MHz, ±1024 μs 

around trigger (2 ms total) 
 Teflon reflectors 
 Copper field shaping rings 
 Acrylic supports 
 Flexible bias/readout cables: copper on 

kapton, no glue 

200kg of Xe enriched to 80.6% Xe-136 and 175kg LXe inside TPC 



EXO-200 Phase-I results 9 

EXO-200 start data taking in June 2011 

Discovery of 2ν mode [PRL 107, 212501 (2011)] 

Confirmation by KamLAND-Zen 
  [PRC 85, 045504 (2012)] 

   [Phys. Rev. C 89 (2014) 015502] 

  yr100.0590.0162.165T 21syststat2

1/2 νββ

Longest and most precisely measured 2nbb half-life 

Precision 136Xe 2νββ Measurement 



EXO-200 Phase-I results 10 

Background in the 0ν ROI:  

(1.7±0.2)∙keV-1 ton-1 yr-1 

From profile likelihood: 

T1/2
0νββ > 1.1·1025 yr  

〈mββ〉< 190 – 450 meV (90% C.L.) 

Nature (2014)  doi:10.1038/nature13432 

136Xe 0νββ search with 
100 kg·yr exposure  

2 



EXO-200 Phase II Sensitivity 11 

EXO-200: 
Nature (2014),  

doi:10.1038/nature13432 
 

GERDA Phase 2:  
Public released result. June, 2016  

(frequentist limit) 
 

KamLAND-Zen: 
arXiv:1605.02889 (2016) 

EXO-200 can reach 0nbb half-life 
sensitivity of 5.7x1025 ys.   

With lower threshold, EXO-200 
can improve measurement of 
136Xe 2nbb and searches in other 
physics channels.    

Upgrades made in Phase II: 
 APD electronics upgrade improved energy resolution from 1.58% to 1.28% at 

Q of 0νββ, and might be better with improved data processing.  
 Deradonator reduced Rn level by a factor of ~10, sufficient to suppress this 

background for 0νββ. 



From EXO-200 to nEXO 

 What did we learn from EXO-200? 
 Measured residual backgrounds 

consistent with radio-assays and 
surpassed the design background goal. 

 Energy resolution is better than design, 
σ/E(Q)=1.28%. 

 Demonstrated power of standoff distance 
in monolithic detector. 

 Demonstrated power of SS/MS b/g 
discrimination. 

 nEXO 
 5 tones of enriched Xe (90% or higher), < 

1.0% (σ/E) energy resolution. 

 Enhanced self shielding. 

 Possible later upgrade to Ba tagging to 
increase sensitivity. 

 Many optimizations from EXO-200 are 
made to improve a successful design. 
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EXO-200 

Detector 

nEXO 

Detector 

1.3 m 



Optimizations from EXO-200 to nEXO 13 



View of conceptual design of nEXO 14 

Ø 13 m 

14 m 

14m 

6,000 m.w.e. depth sufficient to shield cosmogenic background. 

SNOLAB’s cryopit 



nEXO TPC Conceptual Design 15 

 Cathode is located at the bottom of 
TPC. 

 A pad-like charge readout tile is on 
top of TPC. 

 Photo-sensors are behind the field 
shaping rings and will operate in a 
high field region.  



Ongoing research for nEXO  

 Charge readout tile 

 Photo-detector 

 High voltage 

 Radio-assay 

 Low Background, Cryogenic Electronics 

 Calibration 

 Low background Cryostat 

 Simulation 

 Ba-tagging 
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Some highlights of ongoing R&D research 

Charge readout tile 
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Prototype charge readout tile 

 EXO-200 used wires for charge 
readout. 

 In nEXO, a modular and pad-like 
charge collection scheme is under 
study.  

 A 10cm x 10cm prototype has been 
made by IHEP/IME in China. 

 Metallized pads on fused silica 
substrate. 

 Intersections between X and Y are 
isolated with SiO2 layer. 

 3mm pad pitch, 60 orthogonal 
channels (30 x 30). 

 Currently functional testing in LXe is 
processing in US. 
 



R&D of photo-detector in nEXO  18 

Good energy resolution requires efficient readout of the 175nm 
scintillation light to be combined with the ionization signal. 
 
Besides high photon detection efficiency (PDE), a desirable 
photo-detector should also have low noise, reasonable cost, 
ultra-low radioactivity and availability in m2 mount. 

VUV sensitive SiPMs 
Copper vessel Working with a number of SiPM companies. 

We have facilities to 
 Measure SiPM characterization – PDE, dark 

noise, cross talk, … 
 Measure Radio-purity of SiPMs 
 Study SiPM performance in high field. 
 Measure reflectivity on SiPM surface.   
 

Other R&D items related to SiPM: 
Readout schemes; 3D SiPM; Supporting and 
connections.  



SiPM testing 19 

Hamamatsu produces devices with PDE= ~12% @ 175nm (encapsulated devices).  
 

First nEXO-specific run at FBK (Italy) provided ~10% QE [I.Ostrovskiy et al. IEEE TNS 62 (2015) 1.] 

New “RGB” devices reach PDE = ~15% @175nm. 

A new run at FBK was made 
based on a new technology (NUV-
HD). 
The new generation devices 
(NUV) have reached PDE >    
QE>15% @175nm, with 1x1cm2 
devices. 
 

Radio assay results of the FBK 
devices are very encouraging.  
 
Other testing results are coming, 
stay tuned. 

FBK 
1st gen. 

FBK RGB 
1st gen. 



Radio-assay programs for nEXO  

 To achieve nEXO designed sensitivity, 
backgrounds from different sources must 
be well controlled.  
 Cosmogenic background 

 Environmental radioactivity 

 Natural and man-made radioactivity 

 

 Various techniques have been used for 
the material radioactivity measurements. 
 Above ground and underground Ge γ-

spectroscopy 

 Neutron Activation Analysis (NAA) -– 10-9 

g/g for K, 10-12-10-13 g/g for U/Th 

 Inductively Coupled Plasma Mass 
Spectrometry (ICP-MS, China, Korea, 
PNNL) – sub ppt 

 Glow Discharge Mass Spectrometry (GD-
MS) (NRC, Canada) 

 Radon emanation counting – 60 decays/day 

20 

ICP-MS at IHEP, Beijing 

Ge detector lab at U. of Alabama 



Detector simulation 

 Simulations plays an important role in 

detector design optimization and 

sensitivity prediction. 

 A Geant4-based detector simulation 

software has been developed. 

21 

Simulation + radio-assay 
Background contributions in FWHM (2428-
2488 keV) in inner 3-tonne region 



Summary 22 

Inverted hierarchy 

Normal hierarchy 

IH NH 

nEXO goal:  
T1/2 (ββ0ν 136Xe) > 1028 y at 90% C.L. at 5 
years’ exposure 

With the best-case nuclear 
matrix element (GCM) 

90% C.L. sensitivity for a range of 
matrix elements 
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Backup slides 
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Energy Resolution and 2nbb Background 26 

• While LXe TPCs provide many handles to discriminate backgrounds,  energy 
resolution is the only handle to discriminate 2nbb background. 

• Future very large scale detectors should have sufficient energy 

resolution to suppress the 2nbb mode.   

The 2nbb background 

is smallest for 136Xe, 

as it has the longest 

2nbb half-life. 

136Xe 



Events in EXO-200 27 
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Charge readout 

Light readout 
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Charge readout 

Light readout 

V: Induction 
U: Collection 

A single-site energy deposition in EXO-200 

A two-site Compton scattering event 
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nEXO, 5 yr data, 0νββ @ T1/2=6.6x1027 yr, projected backgrounds 
from subsets of the total volume 



Ba-tagging 29 

Images of the 
blue points are 
shown.. 



The EXO-200 detector 30 

 200kg of Xe enriched to 80.6% Xe-136 and 175kg LXe inside TPC 
 Located at 1585 m.w.e. in the Waste Isolation Plant near Carlsbad, NM 

 – Muon rate is ~ 10-7 Hz /cm2 /sr 
 – Salt has inherently lower levels of U/Th, compared to rock 

 EXO-200 start data taking in June 2011, and stopped on Feb. 5, 2014 due to 
WIPP incidents –-- Phase I data. 

 April 2016, phase II data taking begins. 


