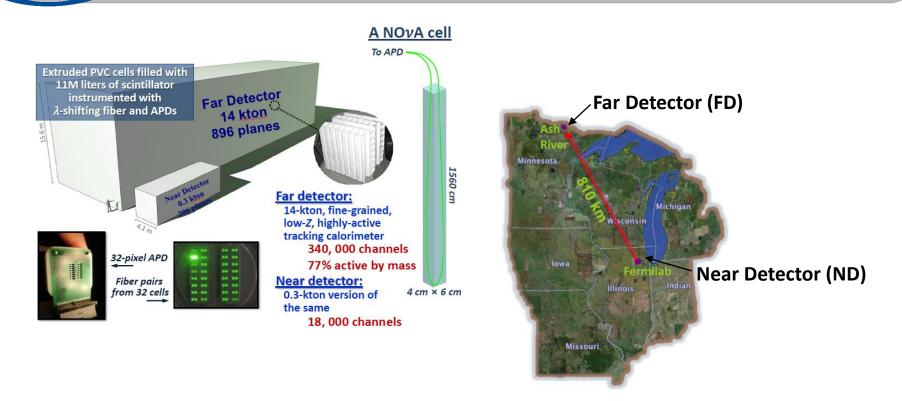

NOvA Near Detector Constraints

Gregory Pawloski University of Minnesota

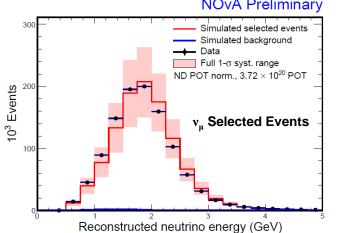
Why not just one detector


If we relied on simulation-only to produce a prediction then we would have large systematic uncertainties that would prevent precision measurements

NOvA Preliminary

"Out-of-the box" simulation agrees well with data (but big uncertainties) Most of this uncertainty comes from the uncertainty on flux and cross-sections FLUGG (flux) GENIE (neutrino interaction)

Functionally Identical Detectors


For a given energy, neutrinos will have the same: Cross-sections Detector/algorithm performance (efficiencies, calibrations)

Neutrino flux geometrically related at the FD and ND

If it all were exactly identical

Making the FD prediction would be trivial

Assume you had zero background and perfect calibration

NOvA Preliminary

For a ν_{μ} disappearance analysis you would: 1) Select the ND data

2) Reweight events by survival probability

3) Compare prediction to FD data.

However... there are differences

Flux (detectors sample different solid angles)

Slight detector differences

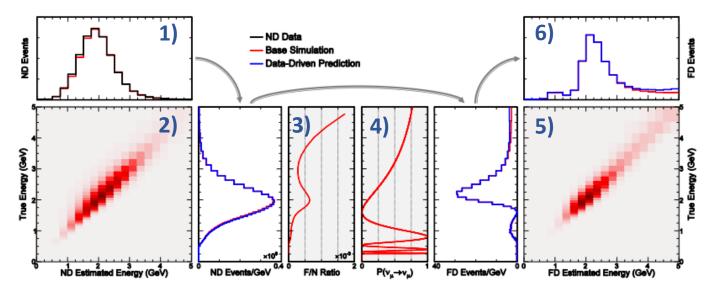
There are backgrounds

Components of selected events oscillate differently or not at all For v_{μ} disappearance, beam backgrounds are tiny

Just use simulation (with uncertainties) and subtract off

For v_e appearance, beam backgrounds are relevant

Reco E has to be mapped to true E


Oscillation depends on true E

Gregory Pawloski – University of Minnesota

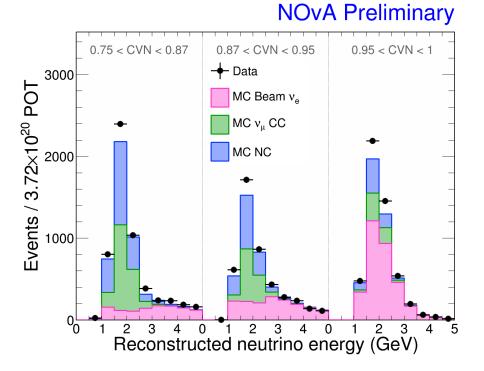
Far/Near Ratio Extrapolation

How do you convert a ND \boldsymbol{v}_{μ} spectrum into a FD prediction

- 1) Select events in ND (use data and subtract off NC background from simulation)
- 2) Map ND reco E to true E (use simulation)
- 3) Apply ratio of FD events to ND events in bins of true E (use simulation) Takes into account differences between two detectors
- 4) Apply oscillation probability on FD true E events (use simulation)
- 5) Map FD true E to reco E (use simulation)
- 6) Add simulated backgrounds & cosmics to get Oscillated FD prediction

Don't need to separately measure flux, cross-section, efficiencies, etc in ND

Systematics accounted for by altering simulation at steps 2, 3, 4, and 5

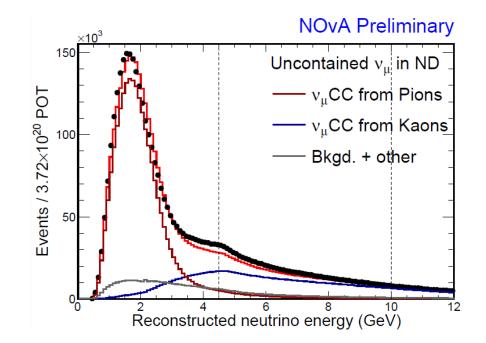

v_u Oscillation Uncertainties

Systematic	Effect on sin²(θ ₂₃)	Effect on Δm^2_{32}	Absolute ener calibration & relative ener calibration betw detectors mo important
Normalisation	± 1.0%	± 0.2 %	
Muon E scale	± 2.2%	± 0.8 %	
Calibration	± 2.0 %	± 0.2 %	
Relative E scale	± 2.0 %	± 0.9 %	
Cross sections + FSI	± 0.6 %	± 0.5 %	
Osc. parameters	± 0.7 %	± 1.5 %	
Beam backgrounds	± 0.9 %	± 0.5 %	
Scintillation model	± 0.7 %	± 0.1 %	
All systematics	± 3.4 %	± 2.4 %	
Stat. Uncertainty	± 4.1 %	± 3.5 %	

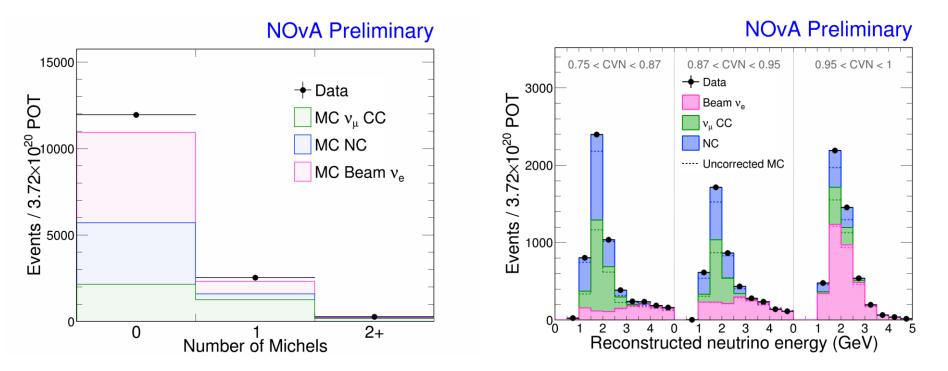
ergy n ergy tween ost t

Flux & Cross section uncertainties mostly cancel in FD/ND ratio \checkmark What about $v_{\mu} \rightarrow v_{e}$

For the oscillation of $v_{\mu} \rightarrow v_{e}$ the signal is not present in the ND ND events are the intrinsic background to the appearance signal The FD signal spectrum depends on the ND v_{μ} spectrum



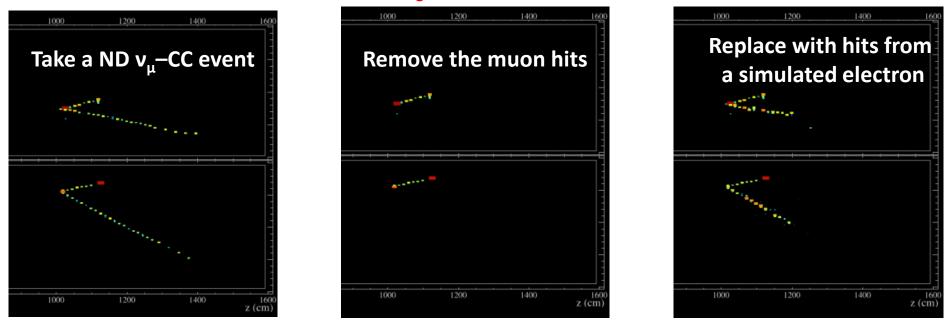
 v_{μ} -CC background component oscillates away in the FD, but NC component will not Have to determine proportion of ND data that is each component Then you can extrapolated each component with FD/ND ratio


Constraining the v_e -CC background events with observed v_u -CC events

 v_{μ} in beam is produced with an associated anti-muon which decays producing intrinsic v_{e}

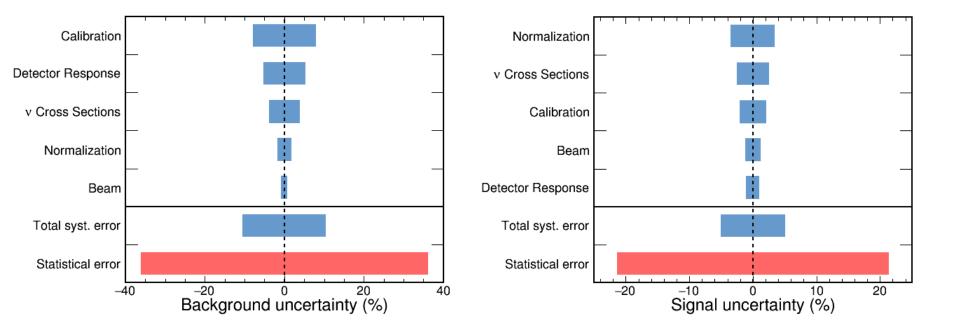
Measure observed v_{μ} -CC spectrum in data and note parent of v_{μ} Scale corresponding contribution to beam v_e production 17% increase in v_e from ancestor kaon production from target 3-4% decrease in v_e from ancestor pion production from target \checkmark What about $v_{\mu} \rightarrow v_{e}$

Constraining the fraction of v_{μ} -CC background events to NC and intrinsic beam v_{e}


The muon from a v_{μ} -CC background event will produce an extra Michel electron By looking at the number of Michel electrons associated with selected event we can rescale the v_{μ} -CC relative to the NC events to fit the ND data

v_e FD Signal Efficiency

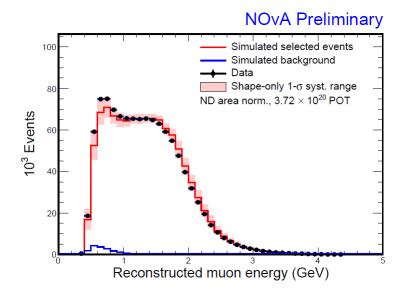
The v_{μ} flux will oscillate into the signal v_{e} component


The selected v_{μ} –CC spectrum in the ND is used to predict the FD v_e –CC spectrum by using a Far/Near ratio extrapolation procedure

We verify the simulation of the v_e -CC selection efficiency by using ND data

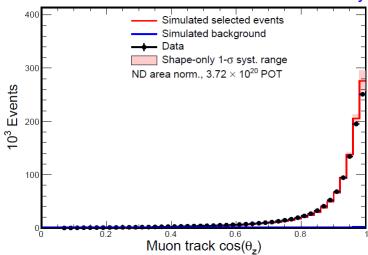
Measured signal efficiency matches simulation at 1% level

v_e Oscillation Uncertainties

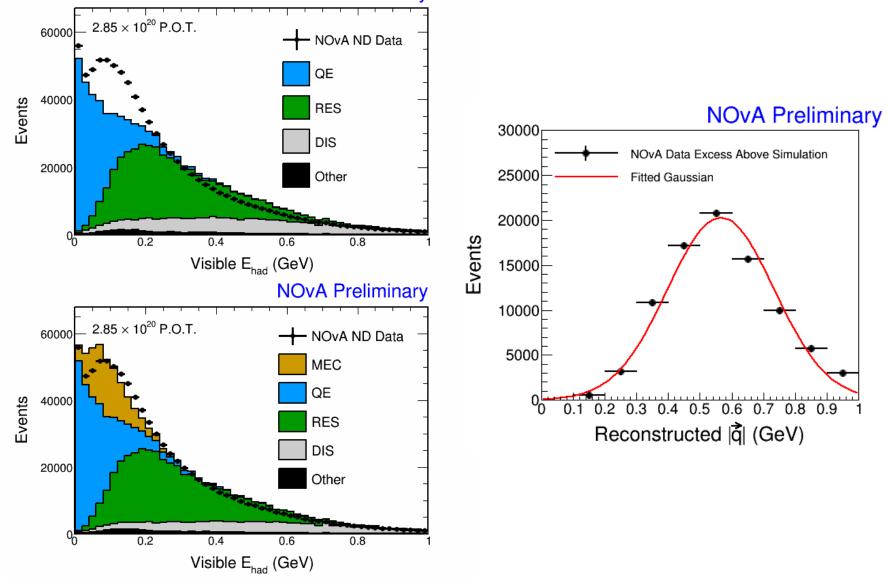

Without extra constraints (eg a Near Detector), the uncertainties from cross sections and flux would be prohibitive for the oscillation analyses.

By using functionally identical technologies, Far/Near ratios can be used to produce FD predictions from ND data.

Uncertainties on cross section, flux, and selection are reduced.



Good Data-MC agreement


Simulated selected events Simulated background Data ND area norm., 3.72 × 10²⁰ POT 100 0,5 Hadronic energy (GeV)

NOvA Preliminary

NOvA Preliminary

Gregory Pawloski – University of Minnesota