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@ Why not just one detector

If we relied on simulation-only to produce a prediction then we would have
large systematic uncertainties that would prevent precision measurements
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“Out-of-the box” simulation agrees well with data (but big uncertainties)

Most of this uncertainty comes from the uncertainty on flux and cross-sections
FLUGG (flux)
GENIE (neutrino interaction)
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@ Functionally Identical Detectors

A NOvVA cell
To APD —__

Extruded PVC cells filled with \
11M liters of scintillator
instrumented with
A-shifting fiber and APDs

Far Detector (FD)

ws 09stT

Far detector:
14-kton, fine-grained,
low-Z, highly-active |
tracking calorimeter

; 32-pixel APD - 340, 000 channels |
= 77% active by mass | J
Fiber pairs Near detector: &
[y from 32 cells 0.3-kton version of 4emx 6cm

the same
18, 000 channels

q N
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{4 Near Detector (ND)

For a given energy, neutrinos will have the same:
Cross-sections

Detector/algorithm performance (efficiencies, calibrations)

Neutrino flux geometrically related at the FD and ND
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@ If it all were exactly identical

Making the FD prediction would be trivial

Assume you had zero background and perfect calibration
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1) Select the ND data

2) Reweight events by survival probability

3) Compare prediction to FD data.
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However... there are differences
Flux (detectors sample different solid angles)
Slight detector differences
There are backgrounds
Components of selected events oscillate differently or not at all
Forv, disappearance, beam backgrounds are tiny
Just use simulation (with uncertainties) and subtract off
For v, appearance, beam backgrounds are relevant
Reco E has to be mapped to true E
Oscillation depends on true E
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@ Far/Near Ratio Extrapolation

How do you convert a ND v, spectrum into a FD prediction
1) Select events in ND (use data and subtract off NC background from simulation)
2) Map ND reco E to true E (use simulation)
3) Apply ratio of FD events to ND events in bins of true E (use simulation)
Takes into account differences between two detectors
4) Apply oscillation probability on FD true E events (use simulation)
5) Map FD true E to reco E (use simulation)
6) Add simulated backgrounds & cosmics to get Oscillated FD prediction
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Don’t need to separately measure flux, cross-section, efficiencies, etcin ND

Systematics accounted for by altering simulation at steps 2, 3,4, and 5
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@ vV, Oscillation Uncertainties

Normalisation +1.0% +0.2%
Absolute energy
Muon E scale +2.2% +0.8% calibration
Calibration +2.0% +0.2% . &
relative energy
Relative E scale +2.0% +0.9% calibration between
Flux & Cross section detectors most
uncertainties mostly  Cross sections + FSI +0.6% +0.5% important
cancel in FD/ND ratio
Osc. parameters +0.7% +1.5%
Beam backgrounds +0.9% +05%
Scintillation model +0.7% +0.1%
All systematics +34% +24%
Stat. Uncertainty t4.1% +3.5%
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@ What about v,—v,

For the oscillation of v,—v, the signal is not present in the ND
ND events are the intrinsic background to the appearance signal
The FD signal spectrum depends on the ND v, spectrum
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v,—CC background component oscillates away in the FD, but NC component will not
Have to determine proportion of ND data that is each component
Then you can extrapolated each component with FD/ND ratio
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@ What about v,—v,

Constraining the v.—CC background events with observed v —CC events

v, in beam is produced with an associated anti-muon which decays producing intrinsic v,
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Measure observed v ,—CC spectrum in data and note parent of v,
Scale corresponding contribution to beam v_ production

17% increase in v, from ancestor kaon production from target
3-4% decrease in v, from ancestor pion production from target
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@ What about v,—v,

Constraining the fraction of v —CC background events to NC and intrinsic beam v,
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The muon from a v —CC background event will produce an extra Michel electron
By looking at the number of Michel electrons associated with selected event
we can rescale the v —CC relative to the NC events to fit the ND data
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@ v. FD Signal Efficiency

The v, flux will oscillate into the signal v, component

The selected v ,—CC spectrum in the ND is used to predict the FD v,—CC spectrum by
using a Far/Near ratio extrapolation procedure

We verify the simulation of the v,—CC selection efficiency by using ND data

LK1 12000 1400 &00 L0 12060 1440

Replace with hits from
a simulated electron |

Measured signal efficiency matches simulation at 1% level
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Calibration

Detector Response
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@ Summary

Without extra constraints (eg a Near Detector), the uncertainties from cross sections
and flux would be prohibitive for the oscillation analyses.

By using functionally identical technologies, Far/Near ratios can be used to produce
FD predictions from ND data.

Uncertainties on cross section, flux, and selection are reduced.
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@ Good Data-MC agreement
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