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Event rate at Super-Kamiokande (Event rate at Super-Kamiokande (νν mode) mode)
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Analysis in stagesAnalysis in stages flux model constrained by NA61/SHINE + 
beam monitor measurements

Systematic error source
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Analysis in stagesAnalysis in stages flux model constrained by NA61/SHINE + 
beam monitor measurements

cross-section model constrained by 
measurements from other experiments

Systematic error source
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Flux modelFlux model

GEANT4 + GCALOR

FLUKAModel from generator tuned to NA61 / SHINE data.
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Flux constraintsFlux constraints
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6 main sources of uncertainties identified lead to 
a ~10% uncertainty at flux peak. 
ND280 fit significantly scales up flux parameters.
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Selection in ND280Selection in ND280

FGD1 = 12C target FGD2 = 12C + H
2
O target

TPCs = particle identification + momentum measurement
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Interaction model: CC-0Interaction model: CC-0ππ
ν

μ
μ-

n p

W
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Interaction model: CC-1Interaction model: CC-1ππ
ν
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Interaction model: CC-otherInteraction model: CC-other

T2K flux
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Events selected in FGD2, ν mode, CC-0π (prefit)

Interaction model: other parametersInteraction model: other parameters

ν
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Interaction model: post-fit constraintsInteraction model: post-fit constraints
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Interaction model: generator modelInteraction model: generator model
MC generator (NEUT v5.3.3) model chosen from Minerνa + MiniBooNE data fit (1):
- Smith-Moniz Relativistic global Fermi Gas (RFG) model of nucleus
- 2p2h interactions from Nieves model (2)

- medium polarisation in nucleus due to relativistic Random Phase Approximation (RPA) 
  from Nieves model (2)

 
cross-section enhancement, modification of kinematics

(1) Phys. Rev. D 93, 072010 (2016)

E
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(2) Phys. Rev. C, 70:055503 (2004)

(1) Phys. Rev. D 93, 072010 (2016)

http://arxiv.org/abs/1601.05592
https://arxiv.org/abs/nucl-th/0408005
http://arxiv.org/abs/1601.05592
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Interaction model: other parameterisationsInteraction model: other parameterisations
How does the fit behave if nature follows another 
model, such as: 
- nucleus model being Benhar's Spectral Function
  instead of RFG
- nucleus model being Relativistic Local Fermi Gas
- Martini's 2p2h model instead of Nieves model
- 2p2h shape parameter (adding to the 
  normalisation parameter)
- effective RPA parameterisation with functional form
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Interaction model: robustness of fit to modelsInteraction model: robustness of fit to models
How does the fit behave if nature follows another model ?

apply weight to  
mimic desired model

ND fake data
(NEUT v5.3.3)

ND fake data
(desired model)
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Interaction model: robustness of fit to modelsInteraction model: robustness of fit to models
How does the fit behave if nature follows another model ?

apply weight to  
mimic desired model

ND280 fit
ND MC

(NEUT v5.3.3)

ND fake data
(NEUT v5.3.3)

ND fake data
(desired model)
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Interaction model: robustness of fit to modelsInteraction model: robustness of fit to models
How does the fit behave if nature follows another model ?

apply weight to  
mimic desired model

ND280 fit
ND MC

(NEUT v5.3.3)

ND fake data
(NEUT v5.3.3)

ND fake data
(desired model)

postfit parameters 
modified from 
nominal fit ?

good ! no need to 
add systematics

N
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Interaction model: robustness of fit to modelsInteraction model: robustness of fit to models
How does the fit behave if nature follows another model ?

apply weight to  
mimic desired model

ND280 fit
ND MC

(NEUT v5.3.3)

ND fake data
(NEUT v5.3.3)

ND fake data
(desired model)

postfit parameters 
modified from 
nominal fit ?

SK fake data
(desired model)

SK MC
(NEUT v5.3.3)

good ! no need to 
add systematics

N
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Interaction model: robustness of fit to modelsInteraction model: robustness of fit to models
How does the fit behave if nature follows another model ?

apply weight to  
mimic desired model

ND280 fit
ND MC

(NEUT v5.3.3)

ND fake data
(NEUT v5.3.3)

ND fake data
(desired model)

postfit parameters 
modified from 
nominal fit ?

SK fake data
(desired model)

SK MC
(NEUT v5.3.3)

Super-Kamiokande
fit

estimate bias on 
oscillation parameters

θfake data - θnominal

σnominalbias =

good ! no need to 
add systematics

N
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ND280 fit: final covariance matrixND280 fit: final covariance matrix
How does the fit behave if nature follows another model? Results:
- ND280 post-fit parameters modified every time the model is changed ;
- bias in oscillation parameters from Local Fermi Gas taken into account by adding 
  uncertainty in ND280 detector covariance matrix ;
- other biases are small considering statistical uncertainties.

cross-section parameters

ν-mode flux parameters

ν-mode flux parameters

Postfit flux + cross-section 
covariance matrix for Super-Kamiokande

Prefit flux + cross-section 
covariance matrix for Super-Kamiokande
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Summary and future prospectsSummary and future prospects
● The ND280 fit:

- reduces the uncertainties from ~12% to ~5% on the number of events predicted at 
  Super-Kamiokande ;
- predicts a higher flux than the initial model ;
- constrains the cross-section parameters in values in the range of initial uncertainties of the
  model.

● Next fit improvements:
- use inter-detector timing information to do
  a 360° selection in ND280 (now +/- 53°) ;
- νe sample in ND280 added to the fit ;
- add new selection in P0D subdetector ;  
- and still, flux tuning with long target
  NA61data, cross-section models study, 
  MC generator improvements, more statistics.

STAY TUNED FOR 
MORE FROM T2K !
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Thank you for your attention !Thank you for your attention !
more about T2K ?    S. Dolan on ν scattering 

D. Cherdack on ν interaction systematics B. Quillain on νe appearance
E. Reinherz-Aronis on ν cross-sections

M. Rayner on near detector upgrades
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backupbackup
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T2K P.O.T.T2K P.O.T.
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Near detectorsNear detectors
ND280

off-axis detector
characterisation of off-axis flux 

and interaction parameters

flux

INGRID
on-axis detector
    beam direction monitoring
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Event rate at Super-Kamiokande (Event rate at Super-Kamiokande (νν mode) mode)
e+ rings

μ+ rings
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T2K analysisT2K analysis
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ND280 fit likelihoodND280 fit likelihood
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Flux prediction at Super-KamiokandeFlux prediction at Super-Kamiokande
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Flux correlations before ND280 fitFlux correlations before ND280 fit 00-19 :
ND280, ν mode, ν

μ

20-39 :
ND280, ν mode, ν

μ

40-59 :
ND280, ν mode, ν

e

60-79 :
ND280, ν mode, ν

e

80-99 :
ND280, ν mode, ν

μ

100-119 :
ND280, ν mode, ν

μ

120-139 :
ND280, ν mode, ν

e

140-159 :
ND280, ν mode, ν

e

160-179 :
SK, ν mode, ν

μ

180-199 :
SK, ν mode, ν

μ

200-219 :
SK, ν mode, ν

e

220-239 :
SK, ν mode, ν

e

240-259 :
SK, ν mode, ν

μ

260-279 :
SK, ν mode, ν

μ

280-299 :
SK, ν mode, ν

e

300-319 :
SK, ν mode, ν

e
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Flux correlations before ND280 fit : zoom Flux correlations before ND280 fit : zoom 
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Flux uncertainties : ND280 Flux uncertainties : ND280 νν mode mode

Total error (13av1)

Previous error 
(11bv3.2)

Total error (13av1)

Previous error 
(11bv3.2)

Total error (13av1)

Previous error 
(11bv3.2)

Total error (13av1)

Previous error 
(11bv3.2)
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Flux uncertainties : ND280 Flux uncertainties : ND280 νν mode mode

Total error (13av1) Total error 
(13av1)

Total error (13av1) Total error 
(13av1)
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Flux uncertainties : Super-Kamiokande Flux uncertainties : Super-Kamiokande νν mode mode

Total error (13av1)

Previous error 
(11bv3.2)

Total error (13av1)

Previous error 
(11bv3.2)

Total error (13av1)

Previous error 
(11bv3.2)

Total error (13av1)

Previous error 
(11bv3.2)
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Flux uncertainties : Super-Kamiokande Flux uncertainties : Super-Kamiokande νν mode mode

Total error (13av1) Total error 
(13av1)

Total error (13av1) Total error 
(13av1)
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Flux constraints : expectationFlux constraints : expectation

sensitivity of ND280 fit to MC fake data
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Flux constraints : ND280 Flux constraints : ND280 νν mode mode
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Flux constraints : ND280 Flux constraints : ND280 νν mode mode
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Flux constraints : Super-Kamiokande Flux constraints : Super-Kamiokande νν mode mode
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Flux constraints : Super-Kamiokande Flux constraints : Super-Kamiokande νν mode mode
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Interaction model: post-fit constraintsInteraction model: post-fit constraints

Parameters used at Super-Kamiokande without being constrained in ND280:
- NC-otherSK (different interactions than NC-otherND280)
- FSISK (different interaction than FSIND280)
- NC-1γ (100% uncertainty)

 



  

Leïla Haegel /University of Geneva NuFact 2016 : T2K near detector constraints 20

Interaction model: post-fit constraintsInteraction model: post-fit constraints
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oscillation fit: pre-ND280 fit covariance matrixoscillation fit: pre-ND280 fit covariance matrix

0-24 :
flux SK, ν mode

25-49
flux SK, ν mode

50-65 :
cross-section

SK flux NuMode Numu 
11 energy range     

SK flux NuMode Numub 
5 energy range

SK flux NuMode Nue
 6 energy range                  

SK flux NuMode Nueb 
2 energy range                

SK flux ANuMode Numu 
5 energy range            

SK flux ANuMode Numub
11 energy range      

SK flux ANuMode Nue 
2 energy range             

SK flux ANuMode Nueb 
7 energy range              

MA_QE                                                                    
pF_O                                                                       
MEC_2p2h_O                                                                   
EB_O                                                               
CA5                                                                 
MA_RES                                                          
BgRES I=1/2                                                 
CC-other                                                      
CC-COH_O
NC-COH         
NC-1GAMMA       
NC-OTHER_FAR  
MEC_NUBAR      
Nue/Numu cross-section 
Nuebar/Numubar cross-section    
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oscillation fit: post-ND280 fit covariance matrixoscillation fit: post-ND280 fit covariance matrix

SK flux NuMode Numu 
11 energy range     

SK flux NuMode Numub 
5 energy range

SK flux NuMode Nue
 6 energy range                  

SK flux NuMode Nueb 
2 energy range                

SK flux ANuMode Numu 
5 energy range            

SK flux ANuMode Numub
11 energy range      

SK flux ANuMode Nue 
2 energy range             

SK flux ANuMode Nueb 
7 energy range              

MA_QE                                                                    
pF_O                                                                       
MEC_2p2h_O                                                                   
EB_O                                                               
CA5                                                                 
MA_RES                                                          
BgRES I=1/2                                                 
CC-other                                                      
CC-COH_O
NC-COH         
NC-1GAMMA       
NC-OTHER_FAR  
MEC_NUBAR      
Nue/Numu cross-section 
Nuebar/Numubar cross-section    
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FGD2 selection distributions: FGD2 selection distributions: νν mode CC-0 mode CC-0ππ

pre-ND280 fit

pre-ND280 fit

post-ND280 fit

post-ND280 fit
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FGD2 selection distributions: FGD2 selection distributions: νν mode CC-1 mode CC-1ππ

pre-ND280 fit

pre-ND280 fit

post-ND280 fit

post-ND280 fit
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FGD2 selection distributions: FGD2 selection distributions: νν mode CC-other mode CC-other

pre-ND280 fit

pre-ND280 fit

post-ND280 fit

post-ND280 fit
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FGD2 selection distributions: FGD2 selection distributions: νν in  in  ν ν mode CC-0mode CC-0ππ

pre-ND280 fit

pre-ND280 fit

post-ND280 fit

post-ND280 fit

post-ND280 fit
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FGD2 selection distributions: FGD2 selection distributions: νν in  in  ν ν mode CC-1mode CC-1ππ+oth+oth

pre-ND280 fit

pre-ND280 fit

post-ND280 fit

post-ND280 fit

post-ND280 fit
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FGD2 selection distributions: FGD2 selection distributions: νν in  in  ν ν mode CC-0mode CC-0ππ

pre-ND280 fit

pre-ND280 fit

post-ND280 fit

post-ND280 fit

post-ND280 fit
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FGD2 selection distributions: FGD2 selection distributions: νν in  in  ν ν mode CC-1mode CC-1ππ+oth+oth

pre-ND280 fit

pre-ND280 fit

post-ND280 fit

post-ND280 fit

post-ND280 fit
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Super-K spectra comparisonSuper-K spectra comparison

T2K preliminary

NEUT v5.3.2

T2K preliminary

NEUT v5.3.2

T2K preliminary

NEUT v5.3.2

T2K preliminary

NEUT v5.3.2

ν mode, μ- rings

ν mode, μ+ rings

ν mode, e- rings

ν mode, e+ rings
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ND280 fit : goodness of fitND280 fit : goodness of fit
The fitted Δχ2 for the data at the minimum is 1448.05.
This corresponds to a p-value 0.086 when compared to the Δχ2 distribution from toy 
experiments, the observed value of 1448.05 is situated at the upper tail of the distribution.

FGD 1 selection, ν mode

FGD 2 selection, ν mode
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ND280 fit : goodness of fitND280 fit : goodness of fit
The fitted Δχ2 for the data at the minimum is 1448.05.
This corresponds to a p-value 0.086 when compared to the Δχ2 distribution from toy 
experiments, the observed value of 1448.05 is situated at the upper tail of the distribution.

FGD 1 selection, ν in ν mode

FGD 2 selection, ν in ν mode
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ND280 fit : goodness of fitND280 fit : goodness of fit
The fitted Δχ2 for the data at the minimum is 1448.05.
This corresponds to a p-value 0.086 when compared to the Δχ2 distribution from toy 
experiments, the observed value of 1448.05 is situated at the upper tail of the distribution.

FGD 1 selection, ν in ν mode

FGD 2 selection, ν in ν mode
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Interaction models : nuclear matter environmentInteraction models : nuclear matter environment

global Relativistic Fermi gas (RFG):
The relativistic Fermi gas model is a common simple model across Fermionic physical systems. 
The assumption is that all particles are in a potential, and form plane-wave states, leading to all 
states being filled up to a Fermi-level, above which no states are filled. In this model, the nuclear 
ground state is a Fermi gas of non-interacting nucleons characterized by a global Fermi 
momentum and a constant binding energy.

Spectral Functions (SF):
“Spectral function” is a generic term for a function that describes the momentum and energy 
distributions of initial nucleons in a nucleus (the RFG can be described by a spectral function very 
easily). For medium-size nuclei, such as carbon and oxygen, various approximations need to be 
made, but spectral functions can still be built by combining information from electron scattering 
data with the theoretical calculations from uniform nuclear matter of different densities. The 
spectral functions used in NEUT were provided by O.Benhar [1]. The spectral function is made up 
of two different terms, a mean-field term for single particles, and a term from correlated pairs of 
nucleons. 
[1] O.Benhar, A. Fabrocini, S. Fantoni, I. Sick. Spectral function of finite nuclei and scattering of 
GeV electrons. Nucl. Phys. A. 579, 493-517 (1994).

local Relativistic Fermi gas (LFG):
An improvement over the global RFG is the so called relativistic local Fermi Gas where the 
Fermi momentum is fixed according to the local density of protons and neutron. The binding 
energy is often neglected but a minimal excitation energy required for the transition to the ground 
state of the final nucleus has been taken into account in the CCQE model

New J.Phys. 16 (2014) 075015

https://arxiv.org/abs/1403.2673
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Interaction models : Random Phase ApproximationInteraction models : Random Phase Approximation

The medium polarization effect is given by Random phase approximation in Many Body 
formalism. RPA computes the propagation of ph pair through the dense medium, mediated by 
residual ph excitation and accounts for long range correlation. [1] shows irreducible diagrams 
responsible for the polarization effects in the 1p1h contribution to the W-self-energy. When 
the electroweak interaction takes place in the nucleus, 1p1h medium polarization leads to 
change in strength of the electroweak coupling altering the CCQE free nucleon prediction.
The update in NEUT uses Nieves Model [1]. The calculation for RPA is based on Local 
Fermi gas model (LFG), using standard axial mass, M

A
QE of 1.0 GeV. RPA alters the CCQE 

cross-section mainly as a function of Q2 , predominantly suppressing the CCQE cross-section 
at low Q2 . The RPA effect is large at low energy where the momentum transfer is 
comparable to or less than nucleon mass.

[1] J. Nieves, J. E. Amaro, and M. Valverde. Inclusive quasielastic charged-current
neutrino-nucleus reactions. Phys. Rev. C, 70:055503, 2004.
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Interaction models : 2p2hInteraction models : 2p2h
Predictions for the multi-nucleon–neutrino contribution to the total charged-current cross-
section are computed by a multi-body expansion of the weak propagator in the medium. The 
first-order expansion gives a prediction for the standard CCQE interaction, where the 
hadronic vertex involves a single nucleon-hole pair. The second-order terms in the 
expansion predict interactions involving additional nucleons or ∆ resonances in the hadronic 
current. This process is often called a multinucleon interaction, a ‘two particle, two hole’ 
interaction, or 2p2h, indicating the presence of two particles ejected from the nucleus, and 
two holes in the nucleus. The process considered in these models is distinct from that 
considered in spectral function models of nuclear dynamics: in the correlation term of the 
spectral function, the two nucleons have some momentum correlation but the hadronic 
current has only one nucleon, whereas in 2p2h interactions, two nucleons contribute to the
hadronic current. 

J. Nieves, I. Ruiz Simo, and M. J. Vicente 
Vacas. Inclusive charged-current
neutrino-nucleus reactions. Phys. Rev. C, 
83:045501, Apr 2011.

M. Martini, M. Ericson, G. Chanfray, and 
J. Marteau. A Unied approach for nucleon 
knock-out, coherent and incoherent pion 
production in neutrino interactions with 
nuclei. Phys. Rev. C, C80:065501, 2009.



  

Leïla Haegel /University of Geneva NuFact 2016 : T2K near detector constraints 37

Interaction models : 2p2h effect on oscillationsInteraction models : 2p2h effect on oscillations

sin2θ
23

2p2h – sin2θ
23

no-2p2h 

INT-PUB-14-059, FERMILAB-CONF-14-484-E

Δm2
32

2p2h – Δm2
323

no-2p2h 

https://arxiv.org/abs/1412.4294
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Interaction models: fit to eternal dataInteraction models: fit to eternal data

 Phys. Rev. D 93, 072010 (2016)

http://arxiv.org/abs/1601.05592
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Interaction models : Pion productionInteraction models : Pion production

Rein-Sehgal model : D. Rein and L. M. Sehgal, Annals Phys. 133, 79 (1981).
was an attempt to describe all data available in 1980 on neutrino production of single pions
in the resonance region up to πN invariant masses W N π of around 2 GeV. The basic 
assumption is that single pion production is mediated by all interfering resonances below 2 
GeV, supplemented with a simple non-interfering, non-resonant phenomenological 
background of isospin 1/2. The needed transition matrix elements are calculated using the 
relativistic quark model of Feynman-Kislinger-Ravndal [192] (formulated in 1970) with 
SU(6) spin-flavor symmetry, and a total of 18 baryon resonances considered.

Vector and axial form factors from Graczyk and Sobczyk : Krzysztof M. Graczyk and Jan T. 
Sobczyk. Form factors in the quark resonance model. Phys. Rev. D, 77:053001, Mar 2008.

New J.Phys. 16 (2014) 075015

https://arxiv.org/abs/1403.2673
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