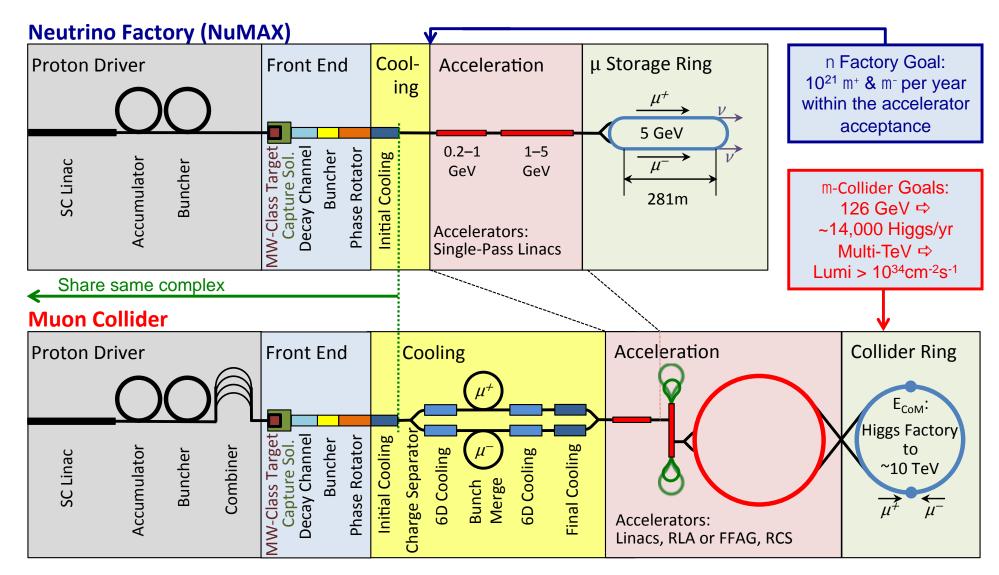
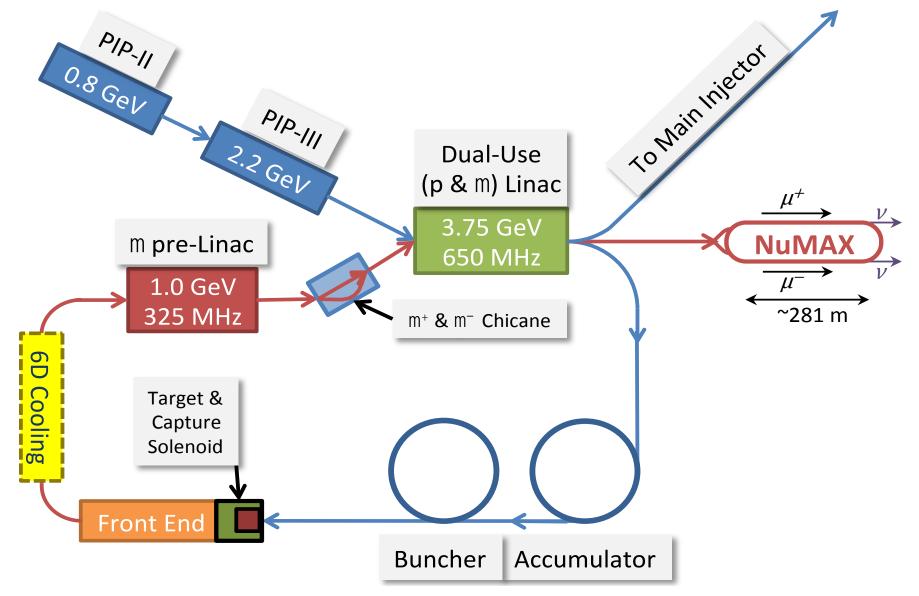
NuFact 2016

Progress towards a Neutrino Factory

Milorad Popovic

http://www-popovic.fnal.gov


APC- Fermilab, Batavia, IL 60510, USA


Who Killed Neutrino Factory Large Theta13 ??? This is not joke, analogy is real! But like with car, time will come when people will say we need:

- Multi GeV high intensity proton beam
- High power target station
- High Brightness Pion beam
- High intensity Muon beam
- Cold Muon beam

And all these at one place is Neutrino Factory

Path to the Future ⇒ Staging

What to do now

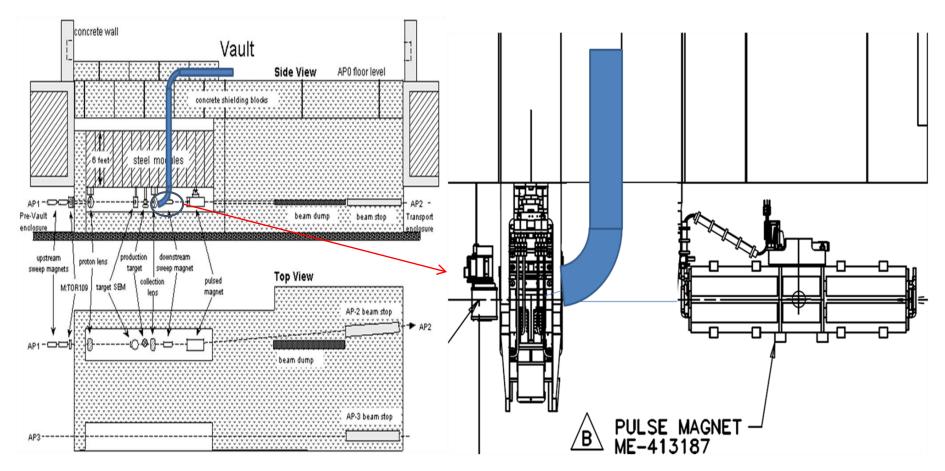
- Superbeam technology will continue to drive initial observations in the coming years
- However, anomalies and new discoveries will drive our need for precision studies to develop a complete physical understanding
- Neutrino Factory capabilities (both long- and short-baseline) offer the route to controlled systematics and precise measurements, which are required to fully elucidate the relevant physics processes

➡ Precision Microscopes for the v sector!

What to do now (at Fermilab)

- Measure neutrino cross-section with better than 10% precision
- Take advantage of the existing accelerator complex configuration providing beam to the New Muon g-2 Experiment
- Utilize existing detectors (MicroBooNE, ICARUS)
- Minimize initial investment. Providing a suitable building to house the detector would be the only investment required
- Describe possible improvements in collecting and storing muons that would allow cross-section measurements with a precision of a few percent with a modest additional investment.
- Provide a suitable test facility for future NF

Muon Campus = Mu2e + g-2 + ???(do Neutrino Cross Sections)



Motivation: ~100kW Target Station

Aug. 19-24, 2013, IHEP, Beijing, China

APO Target Station

We envision positioning a vertically bending 90° magnet right after the Lithium Lens to collect 300 MeV/c π 's as shown in figure.

Comparison...

	PSI ⁽¹⁾ (µE4)	MuSIC	COMET ⁽²⁾	NuFACT ⁽³⁾	AP0 with g-2
Muon intensity (/sec)	3.5x10 ⁸	10 ⁸⁻⁹	10 ¹¹	10 ¹²⁻¹³	~10 ⁸
Proton beam energy (GeV)	0.590	0.4	8	8	8
Proton beam power (W)	1.2M	400	56k	4M	~40kW
Production efficiency (muon/W)	292	2.5 × 10 ⁵⁻⁶	1.7 × 10 ⁶	2.5 × 10 ⁵⁻⁶	
Time structure	Continuous	Continuous	Pulsed	Pulsed	Pulsed
Muon momentum (MeV/c)	85-125 ⁽⁴⁾	20-70	20-70	170-500	~20-300
Beam current (µA)	1.8	1	7	Not given	
Production target	Graphite	Graphite	Tungsten	Mercury jet	Inconel
Max Solenoid Field Strength (T)	5.0	3.5	5.0	20	Li Lens

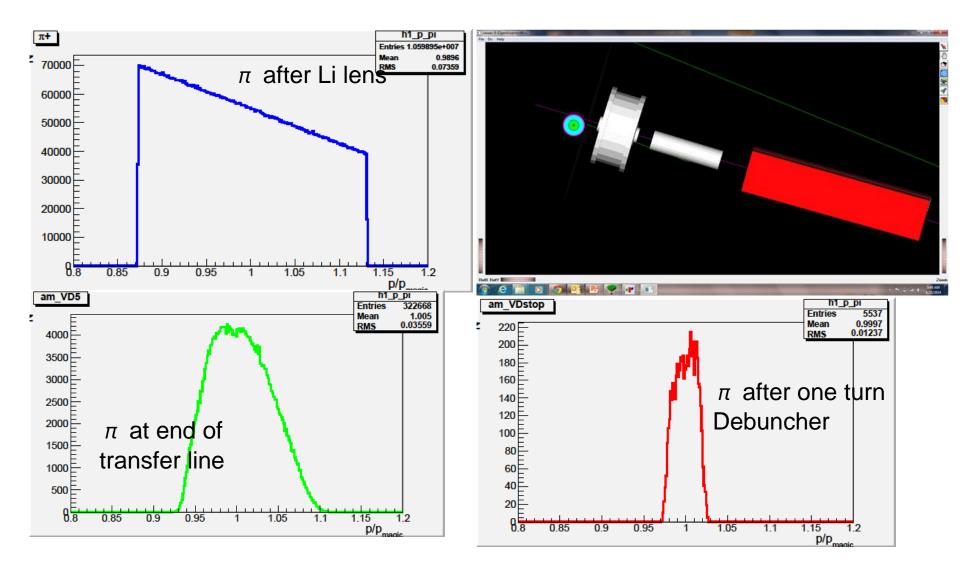
(1) Based On: "A New High-intensity, Low-momentum Muon Beam for the Generation of Low-energy Muons at PSI", Prokscha, T.; Morenzoni, Eet al. (Hyperfine Interactions, Vol. 159, Issue 1-4, pp. 385-388)

(2) COMET CDR

(3) Based on The Muon Collider/Neutrino Factory Target System, H.Kirk and K.McDonald (Aug. 14, 2010) and Study-II report

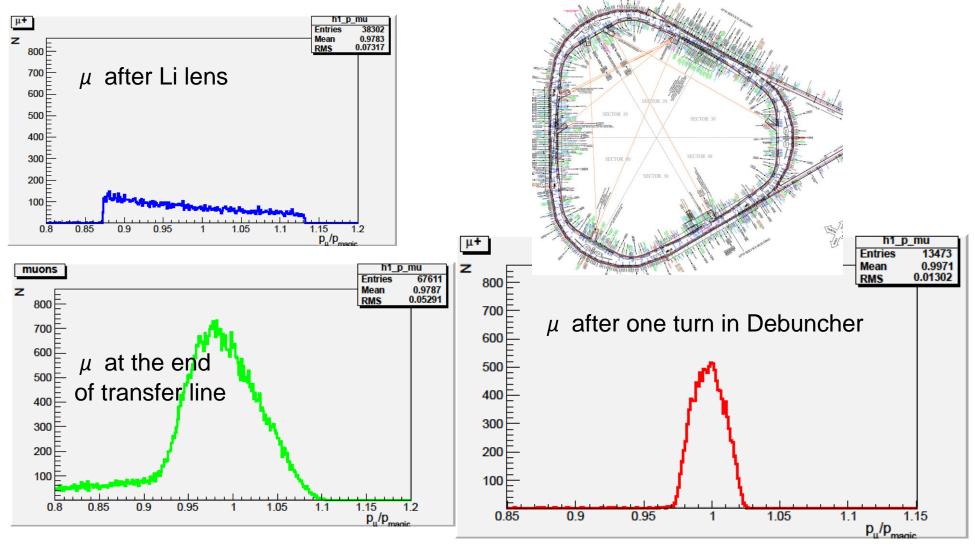
(4) Range over all beamlines

3rd April 2012


Sam Cook

7

Can we, and should we improve?


Aug. 19-24, 2013, IHEP, Beijing, China

G4BeamLine simulations of g-2

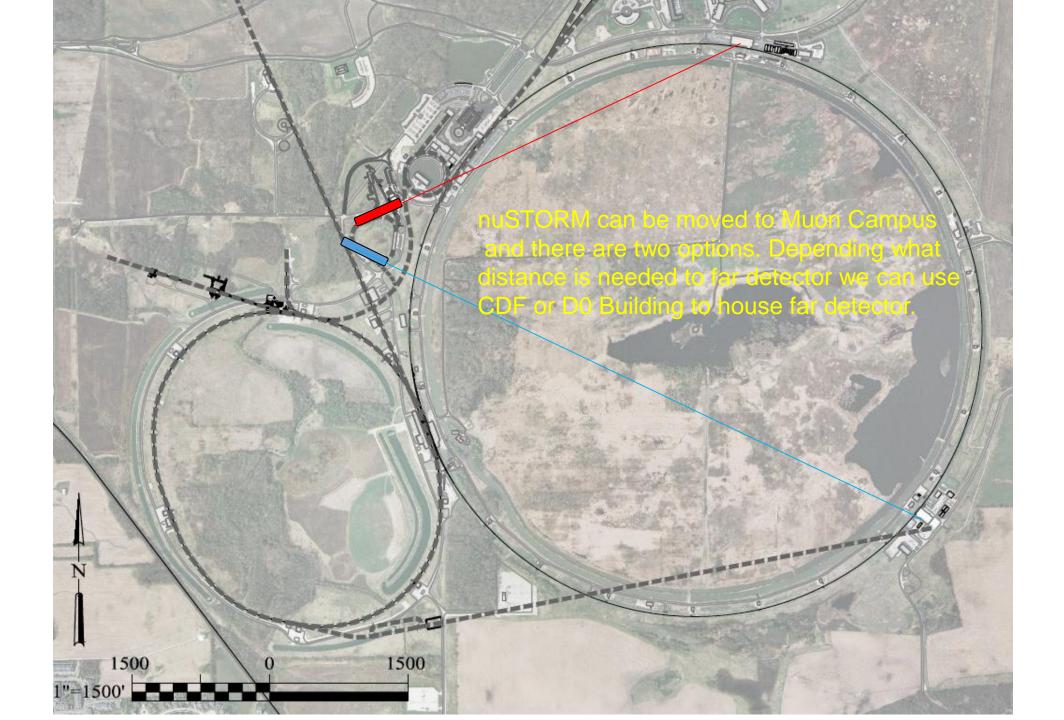
g-2 simulations

6x10⁻⁶ stored muons in the Debuncher per one 8 GeV proton on target

Proton Beam Like for g-2, but with g-2 off

- 5x10¹² protons in a Booster pulse
- 3 Hz, 8 GeV Booster
- Muons are stored for ~100 turns
- Running time 10⁷ Sec (1 year)
- 100 ton detector, 10 meters downstream from ring

~ 400 CC neutrino events

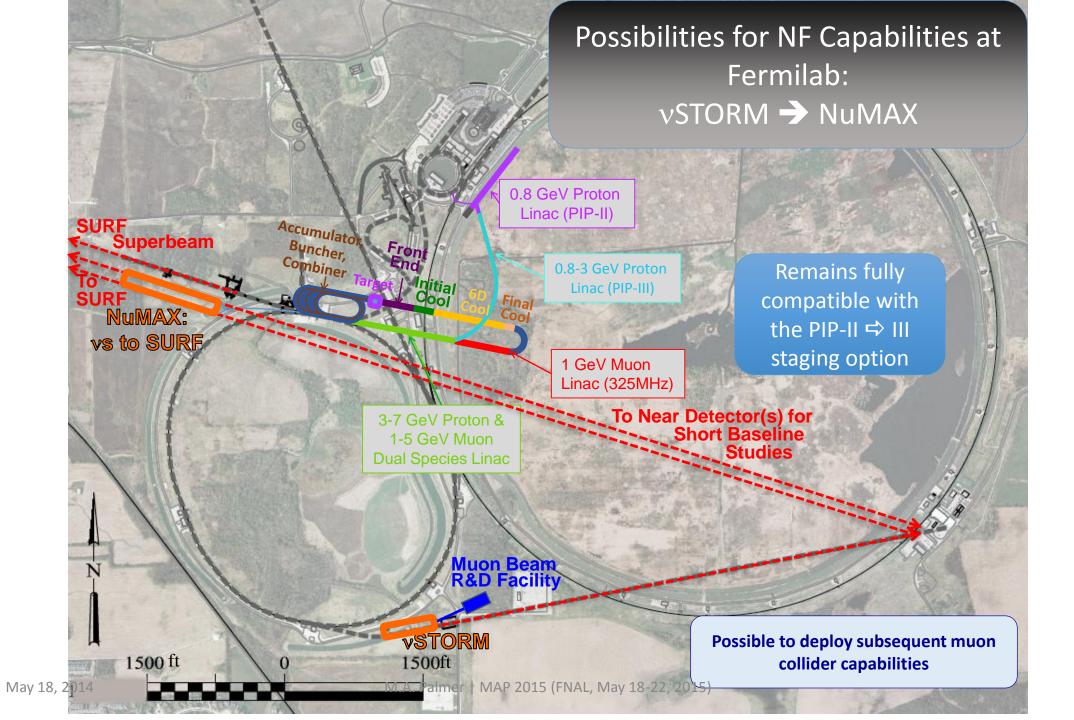

This is for about the cost of moving an existing detector (μ BooNE??, 60T) and building new detector housing (about 3M\$)

Looking Into the Future (cost~\$??)

- 1x10¹³ protons from MI (two Booster pulses, slip stacked)
- 1 Hz, 120 GeV MI
- New Li lens r = 2 cm to increase collection of pi's (x1.5) CERN has made this size Lens
- Make ring a racetrack (x1.5x2) Provide a suitable test facility for future NF
- Running time 1year(2x10⁷ Sec) Fermilab year is ~210⁷ Sec
- Larger detector, ~500 ton detector(x5) ICARUS is 600 ton

~100k CC neutrino events

The End and New Beginning Or The way to nuSTORM (everything is used in upgrade)



If Far Detector is in DO

If Far Detector is in CDF

MASS NF Parameters

Neutrino Factory Parameters								
Parameters	Unit	nuSTORM	NuMAX Commissioning	NuMAX	NuM/\X+			
v_{e} or v_{μ} to detectors/year	-	3×10 ¹⁷	4.9×10 ¹⁹	1.8×10 ²⁰	5.0×10 ²⁰			
Stored µ+ or µ-/year	-	8×10 ¹⁷	1.25×10 ²⁰	4.65×10 ²⁰	1.3×10 ²¹			
Far Detector:	Туре	SuperBIND	MIND / Mag LAr	MIND / Mag LAr	MIND / Mag LAr			
Distance from Ring	km	1.9	1300	1300	1300			
Mass	kT	1.3	100 / 30	100 / 30	100 / 30			
Magnetic Field	Т	2	0.5-2	0.5-2	0.5-2			
Near Detector:	Туре	SuperBIND	Suite	Suite	Suite			
Distance from Ring	m	50	100	100	100			
Mass	kТ	0.1	1	1	2.7			
Magnetic Field	Т	Yes	Yes	Yes	Yes			
Accelerator:								
Ring Momentum (P _µ)	GeV/c	3.8	5	5	5			
Circumference (C)	m	480	737	737	737			
Jonization Cooling	-	No	No	6D Initial	6D Initial			
Proton Beam Power	MW	0.2	1	1	2.7 <mark>5</mark>			