Progress Toward a Higgs Factory

Ben Freemire Illinois Institute of Technology August 25, 2016

Physics Motivations

- Muon beams offer enormous potential for high energy physics
 - Tests of Lepton Flavor Violation (Mu2e)
 - Anomalous magnetic moment hints of new physics (g-2)
 - Equal fractions of electron and muon neutrinos for high intensity neutrino experiments

 $\mu^+ \rightarrow e^+ \nu_e \ \overline{\nu_\mu} \qquad \mu^- \rightarrow e^- \ \overline{\nu_e} \ \nu_\mu$

Large coupling to the Higgs mechanism

$$\sigma \propto \left(rac{m_{\mu}^2}{m_e^2}
ight) pprox 4 \, x \, 10^4$$

Extremely precise probe of fundamental interactions (as with e⁺e⁻ colliders, as opposed to hadron colliders)

OF TECHNOLOGY Higgs Factory Advantages

- So far, the Higgs boson appears to be fairly plain
 - What if nothing "exciting" is seen at the LHC?
- A μ^{*}/μ^{*} collider allows probing of Higgs with unparalleled precision
 - ~0.004% energy resolution
 - Significantly smaller backgrounds than LHC
- Compact (~100 m diameter)
- Acceleration in rings
- Upgradeable to >1 TeV

August 25, 2016

Progress Towards a Higgs Factory -B. Freemire - NuFact'16

Events

3

Muon Collider Parameters								
		Hic	Higgs		<u>Multi-TeV</u>			
								Accounts for
		Produ	ction					Site Radiation
Parameter	Units	Opera	ation					Mitigation
CoM Energy	TeV	0.126			15		3.0	6.0
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	(300.C		1.25	2	1.4	12
Beam Energy Spread	%	1	0.004		0.1	().1	0.1
Higgs Production/10 ⁷ sec		1:	3,500		37,500	200,0	00	820,000
Circumference	km		0.3		2.5	2	1.5	6
No. of IPs			1		2		2	2
Repetition Rate	Hz		15		15		12	6
β*	cm 🖉		1.7	1	(0.5-2)	0.5 (0.3	-3)	0.25
No. muons/bunch	10 ¹²		4		2		2	2
Norm. Trans. Emittance, $\epsilon_{_{TN}}$	π mm-rad		0.2		0.025	0.0	25	0.025
Norm. Long. Emittance, $\epsilon_{\scriptscriptstyle LN}$	π mm-rad		1.5		70		70	70
Bunch Length, σ_s	cm		6.3		1	().5	0.2
Proton Driver Power	MW	4			4	4		1.6
Wall Plug Power	MW		200		216	2	30	270
Exquisite Energy Resolution		S	Success of advanced cooling					
Allows Direct Measurement			concepts a several × 10 ³²					
of Higgs Width								

A Muon Accelerator

- Producing high quality muon beam challenging
 - Proton driver
 - Target

- Cooling
- Acceleration

Emittance

- The initial emittance is much too large to attain the desired • luminosity
- For a Higgs Factory, a momentum spread on the order of 10⁻⁵ ulletmandates small longitudinal emittance

B. Freemire - NuFact'16

Front End

• Target \rightarrow Chicane \rightarrow Decay Channel \rightarrow Buncher \rightarrow Phase rotator

Target

- Two target options:
 - Solid carbon
 - 6.75 GeV protons, 1 MW beam power, 20 T \rightarrow 2 T over 5 m
 - Liquid mercury
 - 8 GeV protons, 4 MW beam power, 15 T \rightarrow 2 T over 5 m

Target Technology

High-speed photographs of mercury jet target for CERN-PS-AA (laboratory tests) 4,000 frames per second, Jet speed: 20 ms-1, diameter: 3 mm, Reynold's Number:>100,000 A. Poncet

- Liquid Mercury target experiment (MERIT) demonstrated
 - Pulsed 4 MW proton beam
 - 15 T magnetic field
- Magnets around target need significant radiation shielding

Chicane

Progress Towards a Higgs Factory -B. Freemire - NuFact'16

Front End Simulation

Ionization Cooling

- Only means of cooling a muon beam fast enough is ionization cooling
- Beam passes though absorbing material, losing energy
- RF cavities replace lost longitudinal momentum to maintain energy along beam path, while losing energy transversely
- Repeated many times, this reduces transverse emittance (4D cooling)

ILLINOIS INSTITUT

OF TECHNOLOGY

Maximizing Cooling

Change in normalized emittance:

- To minimize heating:
 - Small beta function
 - Strong magnetic field
 - Large radiation length
- To maximize cooling:
 - Large stopping power (dE/ds)
- Hydrogen provides ideal radiation length and stopping power

6D Cooling

- Emittance exchange must be introduced to cool in 6D
 - Two schemes

- 6D cooling channels under consideration
 - Rectilinear Cooling Channel
 - Vacuum RF cavities, tilted solenoids, wedge absorbers
 - Helical Cooling Channel
 - Gas filled RF cavities, helical solenoids, homogeneous H₂ absorbers
 - Hybrid Cooling Channel
 - Gas filled RF cavities, tilted solenoids, wedge absorbers

August 25, 2016

Initial Cooling

coils: R_{in}=42cm, R_{out}=60cm, L=30cm; RF: f=325MHz, L=2×25cm; LiH wedges

Transmission as a ratio of the number of muons in the Gaussian core: red solid line - μ^+ , blue dashed line - μ^- .

- 325 MHz cavities filled with H_2 gas, 25 MV/m
- Be windows, radius 30 → 20 cm, thickness 120 → 70 μm
- LiH absorbers with tapered wedge angle 0.17 \rightarrow 0.2 rad, placed at β_{\perp} minimum
- Solenoid pitch 2.5 mrad, tapered B_z 3.9 → 3.5 T, coil inner radius 42 cm
- 6D emittance reduced by factor ~110 for both μ^+ and μ^-
- Transmission ~67% for core of beam

Rectilinear Cooling Channel

- Tilted magnet coils generate dispersion
- Absorbers are discrete LH₂ & LiH wedges
- Axial magnetic field in RF cavities 2.4 $\,\rightarrow\,$ 15 T for 325 MHz and 650 MHz

Helical Cooling Channel

- Helically arranged magnets produce solenoidal and helical dipole and quadrapole fields
- Homogeneously distributed H₂ filled RF cavities placed along particle orbit

RF Cavities in Magnetic Fields

- Early results have shown vacuum pillbox RF cavities break down in strong external magnetic fields
- Likely due to field emission electrons being focused onto small region of opposing wall

ILLINOIS INSTITUTE

OF TECHNOLOGY

Simulation

- Two ways to combat this
 - Limit field emission
 - Limit the effect of field emission

E field contour August 25, 2016

Vacuum Cavities

- Recent results indicate innovative design/surface preparation may improve performance in external magnetic fields
 - Cavity length \rightarrow minimize electron impact energy
 - Window material \rightarrow increase radiation length
 - Surface preparation (electropolishing, TiN coating, ...) → minimize dark current / multipacting
- New vacuum cavity data out soon stay tuned!

Gas Filled Cavities

- Gas limits mean free path of free electrons
- Increasing the gas pressure increases the breakdown gradient
- Metal limits gradient above some gas pressure
- Results show virtually no difference in breakdown gradient between no magnetic field and 3 T

OF TECHNOLOGY Gas Filled Cavity R&D

- Gas filled cavities must fit within • magnet bores
- Reentrant and dielectric loaded concepts being studied
- Dielectric loaded tests with high purity alumina encouraging
 - Realistic design seems feasible

ILLINOIS INSTITUTE

Magnet Progress

- Higgs Factory baseline does not require HTS magnets
- A number of prototypes have been built & tested
 - NbTi (2 models, 4 coils each)
 - YBCO Tape (3 double pancakes)
- Nb₃Sn with continuous coil geometry design
- HTS only coil, 15 T on axis (16 T on coil)
- HTS cable matches strand performance

Progress Towards a Higgs Factory -B. Freemire - NuFact'16

Collider Ring Design

B1

- Large transverse emittance dictate β ~ few cm at IP •
 - Large beam size in final focus guads
- Large aperture magnets in IR (muon decay protection) •

Q3

Quadruplet final focus and 3 sextupole chromaticity correction scheme

Q4

 $5\sigma_v$

August 25, 2016

ILLINOIS INSTITUTE

•

3.5m

a(cm)

25 t

20

15

OF TECHNOLOGY

O2(1)

Q1

Q2(2)

Progress Towards a Higgs Factory -B. Freemire - NuFact'16

IR quadrupole aperture and 5σ beam envelopes for $\beta^* =$ 2.5 cm

Emittance (r

Longitudinal E

10

10.0

- Optics functions in half ring for $\beta^* = 2.5$ cm
- Momentum acceptance > ±5%

Remarks

- A Muon Accelerator could offer excellent physics results
 - Neutrino Factory
 - Higgs Factory / multi-TeV Collider
- Significant progress made in many subsystems
 - Target
 - Beamline
 - Cooling
- Demonstration of cooling concept and technology encouraging
 - RF cavities in magnetic field work!
 - Engineering challenges being addressed